SHORTER NOTES

The purpose of this department is to publish very short papers of unusually polished character, for which there is no other outlet.

RANGES OF JOINT LAPLACE-FOURIER TRANSFORMS

DANIEL J. GRUBB

ABSTRACT. If \(f \in L^1([0,\infty) \times \mathbb{R}) \) and \(\hat{f}(z,s) = \int_{-\infty}^{\infty} \int_{0}^{\infty} f(u,v) e^{iu z} e^{isv} du \, dv, \)
where \(z \in H = \{ z \in \mathbb{C} : \text{Im} \, z \geq 0 \}, s \in \mathbb{R} \), then \(\hat{f}(H \times \mathbb{R}) \cup \{0\} = \hat{f}(\mathbb{R} \times \mathbb{R}) \cup \{0\} \).

The proof is based on the following facts: (a) \(\hat{f} \) is continuous on \(H \times \mathbb{R} \), (b) for fixed \(s \in \mathbb{R} \), \(\hat{f}(z,s) \) is holomorphic on the interior of \(H \), and (c) \(\hat{f} \) vanishes at infinity on \(H \times \mathbb{R} \). Since these facts are well known [1], I only check (c).

Define \(e_x(u,v) = e^{-x u} \) for \(x \in \mathbb{R} \) and \((u,v) \in [0,\infty) \times \mathbb{R} \). Fix \(\varepsilon > 0 \). By dominated convergence, there is an \(R > 0 \) such that \(\|e_R f\|_1 < \varepsilon \). Then, for \(\text{Im} \, z > R \), we have
\[
\int_{-\infty}^{\infty} \int_{0}^{\infty} |f(u,v)| e^{iz(u,v)} du \, dv < \|e_R f\|_1 < \varepsilon.
\]
Again, by dominated convergence, the map \(x \mapsto e_x f \) from \([0,R]\) into \(L^1([0,\infty) \times \mathbb{R}) \) is continuous. By compactness, there are \(0 \leq x_1 < x_2 < \cdots < x_n \leq R \) such that, for any \(0 \leq x \leq R \), there is an \(x_j \) with \(\|e_{x_j} f - e_x f\|_1 < \varepsilon/2 \). Since \(e_{x_j} \hat{f} \) is the Fourier transform, \(e_{x_j} \hat{f} \) vanishes at infinity on \(\mathbb{R} \times \mathbb{R} \). Thus there is a compact \(K \times L \subseteq \mathbb{R} \times \mathbb{R} \) such that \((r,s) \notin K \times L \) implies \(\|e_{x_j} \hat{f}(r,s)\| < \varepsilon/2 \) for all \(x_j \). Then, if \(0 \leq y = \text{Im} \, z \leq R \) and \((\text{Re} \, z, s) \notin K \times L \), we have
\[
|\hat{f}(z,s)| = |\hat{e_y} \hat{f}(\text{Re} \, z, s)| \leq |\hat{e_y} \hat{f}(\text{Re} \, z, s) - e_{x_j} \hat{f}(\text{Re} \, z, s)| + |e_{x_j} \hat{f}(\text{Re} \, z, s)| < \varepsilon/2 + \varepsilon = \varepsilon
\]
for appropriate \(x_j \). Thus \((z,s) \notin (K \times [0,R]) \times L \) implies that \(|\hat{f}(z,s)| < \varepsilon \).

Evidently, we have \(\hat{f}(\mathbb{R} \times \mathbb{R}) \cup \{0\} \subseteq \hat{f}(H \times \mathbb{R}) \cup \{0\} \). To prove the reverse inclusion, fix \(r \notin \hat{f}(\mathbb{R} \times \mathbb{R}) \cup \{0\} \). Since \(\hat{f} \) vanishes at infinity on \(H \times \mathbb{R} \), there is an \(s_0 \in \mathbb{R} \) such that \(r \notin \hat{f}(H \times \{s_0\}) \). Now set \(A = \{s \in \mathbb{R} : r \notin \hat{f}(H \times \{s\})\} \).
Then \(A \) is open. In fact, if \(s \in A \), \(\hat{f}(H \times \{s\}) \) is bounded away from \(r \). By uniform continuity, there is an \(\varepsilon > 0 \) such that \(|s-t| < \varepsilon \) implies \(r \notin \hat{f}(H \times \{t\}) \), i.e., \(t \in A \).

The complement of \(A \) is also open since, if \(s \notin A \), there is a \(z_0 \in H \) with \(\hat{f}(z_0,s) = r \). By assumption on \(r \), \(\text{Im} \, z_0 > 0 \). Since \(z \mapsto \hat{f}(z,s) \) is nonconstant and

Received by the editors November 13, 1985.
1980 Mathematics Subject Classification. Primary 44A30.

©1986 American Mathematical Society
0002-9939/86 $1.00 + $.25 per page
holomorphic, there is a circle C contained in the interior of H such that $\hat{f}(z, s)$ is never r for z in C. Then $a = \inf\{|\hat{f}(z, s) - r|: z \in C\} > 0$. By uniform continuity of \hat{f}, there is an $\varepsilon > 0$ such that $|s - t| < \varepsilon$ implies $|\hat{f}(z, s) - \hat{f}(z, t)| < a$ for all z in C. By Rouché’s Theorem, $\hat{f}(z, t) - r$ has as many roots inside C as does $\hat{f}(z, s) - r$, i.e., at least one. Then $|s - t| < \varepsilon$ implies $t \notin A$.

Since \mathbb{R} is connected and $s_0 \in A$, A is equal to \mathbb{R}, and so r does not belong to $\hat{f}(H \times \mathbb{R}) \cup \{0\}$.

Remark. The foregoing proof is valid with $[0, \infty] \times \mathbb{R}$ replaced by $[0, \infty] \times \mathbb{R}^n$, and $H \times \mathbb{R}$ by $H \times \mathbb{R}^n$, etc.

Rewording the theorem gives

Corollary. For $f \in L^1([0, \infty] \times \mathbb{R})$, the spectrum of f as an element of the Banach algebra $L^1([0, \infty] \times \mathbb{R})$ is the same as the spectrum of f as an element of the Banach algebra $L^1(\mathbb{R} \times \mathbb{R})$.

Remark. Note that the maximal ideal space of $L^1([0, \infty] \times \mathbb{R})$ is (homeomorphic to) $H \times \mathbb{R}$ and that of $L^1(\mathbb{R} \times \mathbb{R})$ is $\mathbb{R} \times \mathbb{R}$ (see [1]). Thus, the above corollary provides a Banach algebra B and a closed subalgebra A such that

(i) the spectrum of any element of A as an element of A coincides with the spectrum as an element of B, while

(ii) not every multiplicative linear functional on A extends to a multiplicative linear functional on B.

For another example where the range of a Fourier type transform is attained on a small portion of the domain see [2].

Bibliography

Department of Mathematics, Kansas State University, Manhattan, Kansas 66506