Ranges of joint Laplace-Fourier transforms
HTML articles powered by AMS MathViewer
- by Daniel J. Grubb
- Proc. Amer. Math. Soc. 97 (1986), 372-373
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835901-6
- PDF | Request permission
Abstract:
If $f \in {L^1}([0,\infty [ \times {\mathbf {R}})$ and $\hat f(z,s) = \smallint _{ - \infty }^\infty \smallint _0^\infty f(u,v){e^{iuz}}{e^{isv}}dudv$, where $z \in H = \{ z \in {\mathbf {C}}:\operatorname {Im} \geqslant 0\} ,s \in {\mathbf {R}}$, then $\hat f(H \times {\mathbf {R}}) \cup \{ 0\} = \hat f({\mathbf {R}} \times {\mathbf {R}}) \cup \{ 0\}$.References
- Richard Arens and I. M. Singer, Generalized analytic functions, Trans. Amer. Math. Soc. 81 (1956), 379–393. MR 78657, DOI 10.1090/S0002-9947-1956-0078657-5
- Edwin Hewitt and J. H. Williamson, Note on absolutely convergent Dirichlet series, Proc. Amer. Math. Soc. 8 (1957), 863–868. MR 90680, DOI 10.1090/S0002-9939-1957-0090680-X
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 372-373
- MSC: Primary 44A10; Secondary 42A38
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835901-6
- MathSciNet review: 835901