## Counterexample to the Lu Qi-Keng conjecture

HTML articles powered by AMS MathViewer

- by Harold P. Boas PDF
- Proc. Amer. Math. Soc.
**97**(1986), 374-375 Request permission

## Abstract:

There exists a smooth bounded strongly pseudoconvex domain in ${{\mathbf {C}}^2}$, smoothly equivalent to the ball, whose Bergman kernel function has zeroes.## References

- Kazuo Azukawa,
*Square-integrable holomorphic functions on a circular domain in $C^n$*, Tohoku Math. J. (2)**37**(1985), no. 1, 15–26. MR**778368**, DOI 10.2748/tmj/1178228719 - R. E. Greene and Steven G. Krantz,
*Stability properties of the Bergman kernel and curvature properties of bounded domains*, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 179–198. MR**627758** - Steven G. Krantz,
*Function theory of several complex variables*, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982. MR**635928** - Q.-k. Lu,
*On Kaehler manifolds with constant curvature*, Chinese Math.–Acta**8**(1966), 283–298. MR**0206990** - I. Ramadanov,
*Sur une propriété de la fonction de Bergman*, C. R. Acad. Bulgare Sci.**20**(1967), 759–762 (French). MR**226042** - Paul Rosenthal,
*On the zeros of the Bergman function in doubly-connected domains*, Proc. Amer. Math. Soc.**21**(1969), 33–35. MR**239066**, DOI 10.1090/S0002-9939-1969-0239066-3 - M. Skwarczyński,
*The invariant distance in the theory of pseudoconformal transformations and the Lu Qi-keng conjecture*, Proc. Amer. Math. Soc.**22**(1969), 305–310. MR**244512**, DOI 10.1090/S0002-9939-1969-0244512-5 - Nobuyuki Suita and Akira Yamada,
*On the Lu Qi-keng conjecture*, Proc. Amer. Math. Soc.**59**(1976), no. 2, 222–224. MR**425185**, DOI 10.1090/S0002-9939-1976-0425185-9 - Jan J. O. O. Wiegerinck,
*Domains with finite-dimensional Bergman space*, Math. Z.**187**(1984), no. 4, 559–562. MR**760055**, DOI 10.1007/BF01174190

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**97**(1986), 374-375 - MSC: Primary 32H10; Secondary 32A07, 32H05
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835902-8
- MathSciNet review: 835902