Polynomials with no small prime values
Author:
Kevin S. McCurley
Journal:
Proc. Amer. Math. Soc. 97 (1986), 393-395
MSC:
Primary 11N32; Secondary 11R09
DOI:
https://doi.org/10.1090/S0002-9939-1986-0840616-4
MathSciNet review:
840616
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $f(x)$ be a polynomial with integer coefficients, and let \[ D(f) = {\text {g}}{\text {.c}}{\text {.d}}\{ f(x):x \in {\mathbf {Z}}\}.\] It was conjectured by Bouniakowsky in 1857 that if $f(x)$ is nonconstant and irreducible over ${\mathbf {Z}}$, then $|f(x)|/D(f)$ is prime for infinitely many integers $x$. It is shown that there exist irreducible polynomials $f(x)$ with $D(f) = 1$ such that the smallest integer $x$ for which $|f(x)|$ is prime is large as a function of the degree of $f$ and the size of the coefficients of $f$.
- Leonard M. Adleman and Andrew M. Odlyzko, Irreducibility testing and factorization of polynomials, Math. Comp. 41 (1983), no. 164, 699–709. MR 717715, DOI https://doi.org/10.1090/S0025-5718-1983-0717715-6 V. Bouniakowsky, Sur les diviseurs numeriques invariables des fonctions rationelles entires, Mem. Acad. Sci. St. Petersburg 6 (1857), 305-329.
- Kevin S. McCurley, Prime values of polynomials and irreducibility testing, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 155–158. MR 741729, DOI https://doi.org/10.1090/S0273-0979-1984-15247-9
- K. Prachar, Über die kleinste Primzahl einer arithmetischen Reihe, J. Reine Angew. Math. 206 (1961), 3–4 (German). MR 125092, DOI https://doi.org/10.1515/crll.1961.206.3
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11N32, 11R09
Retrieve articles in all journals with MSC: 11N32, 11R09
Additional Information
Article copyright:
© Copyright 1986
American Mathematical Society