On a theorem of Hardy and Littlewood on the polydisc
HTML articles powered by AMS MathViewer
- by Hong Oh Kim
- Proc. Amer. Math. Soc. 97 (1986), 403-409
- DOI: https://doi.org/10.1090/S0002-9939-1986-0840619-X
- PDF | Request permission
Abstract:
We prove the polydisc version of the theorem of Hardy and Littlewood on the fractional integral: If $0 < \alpha < 1/p$ and if $f \in {H^p}$, then ${I^\alpha }f \in {H^q}$ with $q = p/(1 - \alpha p)$ where ${I^\alpha }f$ is the fractional integral of $f$ of order $\alpha$.References
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746–765. MR 304667, DOI 10.1016/0022-247X(72)90081-9
- Arlene P. Frazier, The dual space of $H^{p}$ of the polydisc for $0<p<1$, Duke Math. J. 39 (1972), 369–379. MR 293119
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), no. 1, 403–439. MR 1545260, DOI 10.1007/BF01180596
- G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. Oxford Ser. 12 (1941), 221–256. MR 6581, DOI 10.1093/qmath/os-12.1.221 B. Jawerth and A. Torchinsky, On a Hardy and Littlewood imbedding theorem, preprint.
- Hong Oh Kim, Derivatives of Blaschke products, Pacific J. Math. 114 (1984), no. 1, 175–190. MR 755488
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841 —, Function theory in the unit ball of ${C^n}$, Springer-Verlag, New York, 1980.
- A. Zygmund, On the boundary values of functions of several complex variables. I, Fund. Math. 36 (1949), 207–235. MR 35832, DOI 10.4064/fm-36-1-207-235
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 403-409
- MSC: Primary 32A35; Secondary 30D55
- DOI: https://doi.org/10.1090/S0002-9939-1986-0840619-X
- MathSciNet review: 840619