Essential maps exist from $B\textrm {U}$ to $\textrm {Coker} J$
HTML articles powered by AMS MathViewer
- by Mark Feshbach
- Proc. Amer. Math. Soc. 97 (1986), 539-545
- DOI: https://doi.org/10.1090/S0002-9939-1986-0840642-5
- PDF | Request permission
Abstract:
We show that $[{\text {BU,coker}} J] \ne 0$ but that there are no infinite loop maps from BU to coker $J$. The proofs involve the Segal conjecture.References
- M. F. Atiyah and G. B. Segal, Equivariant $K$-theory and completion, J. Differential Geometry 3 (1969), 1β18. MR 259946, DOI 10.4310/jdg/1214428815
- Gunnar Carlsson, Equivariant stable homotopy and Segalβs Burnside ring conjecture, Ann. of Math. (2) 120 (1984), no.Β 2, 189β224. MR 763905, DOI 10.2307/2006940
- Tammo tom Dieck, Transformation groups and representation theory, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. MR 551743, DOI 10.1007/BFb0085965
- Mark Feshbach, The Segal conjecture for compact Lie groups, Topology 26 (1987), no.Β 1, 1β20. MR 880503, DOI 10.1016/0040-9383(87)90016-4
- Mark Feshbach, The transfer and compact Lie groups, Bull. Amer. Math. Soc. 83 (1977), no.Β 3, 372β374. MR 440548, DOI 10.1090/S0002-9904-1977-14274-2
- Topics in $K$-theory, Lecture Notes in Mathematics, Vol. 496, Springer-Verlag, Berlin-New York, 1975. Two independent contributions. MR 0388371
- Erkki Laitinen, On the Burnside ring and stable cohomotopy of a finite group, Math. Scand. 44 (1979), no.Β 1, 37β72. MR 544579, DOI 10.7146/math.scand.a-11795
- Ib Madsen and R. James Milgram, The classifying spaces for surgery and cobordism of manifolds, Annals of Mathematics Studies, No. 92, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. MR 548575
- Douglas C. Ravenel, The Segal conjecture for cyclic groups and its consequences, Amer. J. Math. 106 (1984), no.Β 2, 415β446. With an appendix by Haynes R. Miller. MR 737779, DOI 10.2307/2374309
- Graeme Segal, The stable homotopy of complex projective space, Quart. J. Math. Oxford Ser. (2) 24 (1973), 1β5. MR 319183, DOI 10.1093/qmath/24.1.1
- Victor P. Snaith, Algebraic cobordism and $K$-theory, Mem. Amer. Math. Soc. 21 (1979), no.Β 221, vii+152. MR 539791, DOI 10.1090/memo/0221
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 539-545
- MSC: Primary 55N20; Secondary 55P42, 55Q55
- DOI: https://doi.org/10.1090/S0002-9939-1986-0840642-5
- MathSciNet review: 840642