On $C^ m$ rational approximation
HTML articles powered by AMS MathViewer
- by Joan Verdera
- Proc. Amer. Math. Soc. 97 (1986), 621-625
- DOI: https://doi.org/10.1090/S0002-9939-1986-0845976-6
- PDF | Request permission
Abstract:
Let $X \subset {\bf {C}}$ be compact and let $f$ be a compactly supported function in ${C^m}({\bf {C}})$, $0 < m \in {\bf {Z}}$, such that $\partial f/\partial \bar z$ vanishes on $X$ up to order $m - 1$. We prove that $f$ can be approximated in ${C^m}({\bf {C}})$ by a sequence of functions which are holomorphic in neighborhoods of $X$.References
- Joaquim Bruna and Josep Ma. Burgués, Holomorphic approximation in $C^{m}$-norms on totally real compact sets in $\textbf {C}^{n}$, Math. Ann. 269 (1984), no. 1, 103–117. MR 756779, DOI 10.1007/BF01455999
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- Nguyen Xuan Uy, Removable sets of analytic functions satisfying a Lipschitz condition, Ark. Mat. 17 (1979), no. 1, 19–27. MR 543500, DOI 10.1007/BF02385454
- A. G. O’Farrell, Rational approximation in Lipschitz norms. I, Proc. Roy. Irish Acad. Sect. A 77 (1977), no. 10, 113–115. MR 507905
- A. G. O’Farrell, Rational approximation in Lipschitz norms. II, Proc. Roy. Irish Acad. Sect. A 79 (1979), no. 11, 103–114. MR 549734
- Anthony G. O’Farrell, Hausdorff content and rational approximation in fractional Lipschitz norms, Trans. Amer. Math. Soc. 228 (1977), 187–206. MR 432887, DOI 10.1090/S0002-9947-1977-0432887-2
- A. G. O’Farrell, Qualitative rational approximation on plane compacta, Banach spaces, harmonic analysis, and probability theory (Storrs, Conn., 1980/1981) Lecture Notes in Math., vol. 995, Springer, Berlin, 1983, pp. 103–122. MR 717230, DOI 10.1007/BFb0061890
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 621-625
- MSC: Primary 30E10
- DOI: https://doi.org/10.1090/S0002-9939-1986-0845976-6
- MathSciNet review: 845976