FINITE RANK PERTURBATIONS OF SINGULAR SPECTRA

JAMES S. HOWLAND

ABSTRACT. Let T be selfadjoint, and V nonnegative of finite rank, with the range of V cyclic for T. Then the singular parts of T and $H = T + V$ are supported on two sets S_T and S_H such that the multiplicity of T on $S_T \cap S_H$ is less than the rank of V.

1. Introduction. In [3], Donoghue, following earlier work of Aronszajn, proved

1. THEOREM. Let ϕ be a cyclic vector for a selfadjoint operator T. For real $c \neq 0$, the singular parts of T and $H = T + c\langle \cdot, \phi \rangle \phi$ are supported on disjoint sets.

To generalize this result to perturbations of rank higher than one is not completely straightforward, as a consideration of matrix examples will easily show. A certain generalization to nonnegative perturbations was given by the author in [4]. The criterion of that paper will be applied here to prove the following result:

2. THEOREM. Let T be selfadjoint, V a nonnegative operator of finite rank, and $H = T + V$. Assume that the range of V is cyclic for T. Let μ_T and $n_T(\lambda)$ be a scalar spectral measure and multiplicity function of T, and define

$$G = \{ \lambda : n_T(\lambda) = \text{rank} V \}.$$

Then there exist sets S_T and S_H supporting the singular parts of T and H such that $S_T \cap G$ and S_H are disjoint.

Note that $n_T(\lambda)$ cannot exceed the rank of V when the range of V is cyclic. This has the following corollary, which is interesting even for matrices.

3. COROLLARY. Let T be selfadjoint, V nonnegative of finite rank, and the range of V cyclic for T. If λ is an eigenvalue of T with multiplicity equal to the rank of V, then λ is not an eigenvalue of $H = T + V$.

For related work, see also [1, 2, 5].

2. Proofs. Note that the basic Hilbert space \mathcal{H} is separable because the range $V \mathcal{H}$ of V is cyclic. Multiplicity theory is therefore applicable.

For $\varepsilon > 0$, define the function

$$\delta_\varepsilon(t) = \frac{\varepsilon}{\pi t^2 + \varepsilon^2}.$$

As observed by Donoghue [3, §1], the singular part of T is supported by the measurable set

$$S_T = \left\{ \lambda : \lim_{\varepsilon \downarrow 0} \langle \delta_\varepsilon (T - \lambda) x, x \rangle = \infty \text{ for some } x \in V \mathcal{H} \right\}$$

and similarly for H.

Received by the editors March 4, 1985 and, in revised form, July 5, 1985.

1980 Mathematics Subject Classification. Primary 47A55.

1Supported by NSF Grant MCS-82-02115-01.
Let \(v_1 \geq v_2 \geq \cdots \geq v_r > 0 \) be the nonzero eigenvalues of \(V \), and \(\phi_1, \ldots, \phi_r \) the corresponding normalized eigenvectors, which therefore are an orthonormal basis of \(V \mathcal{H} \). Because \(V \mathcal{H} \) is cyclic, one may choose
\[
\mu_T(S) = \sum_{j=1}^{r} \langle E_T[S] \phi_j, \phi_j \rangle
\]
as the scalar spectral measure, where \(E_T \) is the spectral measure of \(T \). Thus, \(\langle E_T(d\lambda) \phi_i, \phi_j \rangle \) is absolutely continuous with respect to \(\mu_T \). Define \(M_{ij}(\lambda) \) \(\mu_T \)-a.e. to be the Radon-Nikodým derivative
\[
\langle E_T(d\lambda) \phi_i, \phi_j \rangle = M_{ij}(\lambda) \mu_T(d\lambda)
\]
and \(M(\lambda) \) to be the nonnegative matrix \(M(\lambda) = \{M_{ij}(\lambda)\}_{i,j=1,\ldots,r} \). We shall regard \(M(\lambda) \) as an operator on the space \(V \mathcal{H} \). Let \(m(\lambda) \) be the smallest eigenvalue of \(M(\lambda) \):
\[
m(\lambda) = \inf\{\langle M(\lambda)u, u \rangle : |u|^2 = 1, \ u \in V \mathcal{H} \},
\]
where \(|u| \) is the norm of \(u \) in \(\mathcal{H} \). Since \(u \) may be restricted to a countable dense set, \(m(\lambda) \) is measurable. One has
\[
(1) \quad M(\lambda) \geq m(\lambda) P
\]
where \(P \) is the projection onto \(V \mathcal{H} \). Note also that
\[
(2) \quad m(\lambda) \leq 1.
\]
Clearly, for all Borel sets \(S \), \(\langle E_T[S] \phi_i, \phi_i \rangle \leq \mu_T(S) \) so that \(M_{ii}(\lambda) \leq 1 \) \(\mu_T \)-a.e., and hence
\[
m(\lambda) \leq \min_{1 \leq i \leq r} M_{ii}(\lambda) \leq 1.
\]

4. LEMMA. One has
\[
n_T(\lambda) = \text{rank } M(\lambda) \quad \mu_T \text{-a.e.}
\]

PROOF. This undoubtedly follows from the readers' favorite version of multiplicity theory. The author's favorite version is the Kato-Kuroda construction of direct integrals by spectral forms \[6, 7\]. In that terminology, let \(X = V \mathcal{H} \), and
\[
f(\lambda, u) = \sum_{i,j=1}^{r} u_i \overline{u}_j M_{ij}(\lambda) \equiv \langle M(\lambda)u, u \rangle
\]
for \(u = u_1 \phi_1 + \cdots + u_r \phi_r \in X \). Then \((f, X) \) is a spectral form for \(T \) with respect to \(\mu_T \), and the direct integral
\[
\mathcal{H} \cong \int_{\sigma(T)}^{\oplus} X(\lambda) \mu_T(d\lambda)
\]
diagonalizes \(T \), where \(X(\lambda) \) is the (completion of) the quotient space \(X/\{u \in X : f(\lambda, u) = 0\} \). In this case, no completion is needed, since \(X(\lambda) \) is the finite-dimensional space \(V \mathcal{H}/\ker M(\lambda) \) whose dimension is \(\text{rank } M(\lambda) \). \(\square \)

The theorem of \[4\] will now be recalled. Let \(K \) be another Hilbert space, and \(A : K \to \mathcal{H} \) bounded. Let \(T \) be selfadjoint, and assume that \(AK \) is cyclic for \(T \).
5. PROPOSITION. The singular part of \(H = T + AA^* \) is supported on the complement of the set of points \(\lambda \) for which there is an \(\eta > 0 \) such that

\[
A^*\delta_{\epsilon}(T - \lambda)A \geq \eta I
\]

for all sufficiently small \(\epsilon > 0 \).

Note that \(I \) in (3) is the identity on \(K \), not \(\mathcal{H} \). Note also that Proposition 5 implies Theorem 1 if one takes \(K = \mathbb{C} \) (the complex numbers) and \(A^* = c^{1/2}\langle \cdot, \phi \rangle \) (not \(A \), as the misprint in [4] has it). Note finally that although \(T \) was assumed bounded in [4], the proof there goes through unchanged for unbounded \(T \).

To prove Theorem 2, factor \(V = AA^* \) through the space \(K = V\mathcal{H} = V^{1/2}\mathcal{H} \) by defining \(A: V^{1/2}\mathcal{H} \to \mathcal{H} \) as \(Au = V^{1/2}u \). Then \(A^*: \mathcal{H} \to V^{1/2}\mathcal{H} \) is also \(A^*u = V^{1/2}u \), and \(V = AA^* \). The identity \(I \) in (3) is now the projection \(P \) onto \(V\mathcal{H} \).

For fixed \(\lambda \) and \(u \in V\mathcal{H} \), one has

\[
(A^*\delta_{\epsilon}(T - \lambda)Au, u) = (\delta_{\epsilon}(T - \lambda)V^{1/2}u, V^{1/2}u)
\]

\[
= \sum_{i,j=1}^{r} u_i\bar{u}_j v_i^{1/2} v_j^{1/2} (\delta_{\epsilon}(T - \lambda)\phi_i, \phi_j)
\]

\[
\geq v_r(\delta_{\epsilon}(T - \lambda)u, u) = v_r \int \delta_{\epsilon}(t - \lambda)(M(t)u, u) \mu_T(dt)
\]

\[
\geq v_r\|u\|^2 \int \delta_{\epsilon}(t - \lambda)m(t) \mu_T(dt)
\]

where (1) was used at the last step. Let \(F \) be the set of all \(\lambda \) for which

\[
\lim_{\epsilon \to 0} \int \delta_{\epsilon}(t - \lambda)m(t) \mu_T(dt) = \infty.
\]

By (2), \(F \subset S_T \), while by Proposition 5, its complement \(F^c \) supports the singular part of \(H \). (In fact, by the proof in [5], \(S_H \subset F^c \).)

Now [3, §1] \(F \) supports the singular part of the measure \(m(t) \mu_T(dt) \). The measure \(\chi_G(t) \mu_T(dt) \) has the same null sets, because \(G = \{ t: m(t) > 0 \} \), and its singular part is supported by \(S_T \cap G \). Thus \(F \) and \(S_T \cap G \) differ only by a set of \(\mu_T \)-measure zero. The result is then obtained by replacing \(S_T \) by \(S'_T = S_T - (G \cap S_T \cap F^c) \). □

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, VIRGINIA 22903