Engulfing and finitely generated groups
HTML articles powered by AMS MathViewer
- by Richard Skora
- Proc. Amer. Math. Soc. 97 (1986), 734-736
- DOI: https://doi.org/10.1090/S0002-9939-1986-0845998-5
- PDF | Request permission
Abstract:
Let $M$ be a simply connected $3$-manifold and $K$ a piecewiselinear, simple loop in the interior of $M$. It is shown that there is a piecewiselinear, homotopy $3$-ball $\mathcal {B} \subset \mathring {M}$, such that $K \subset \mathring {\mathcal {B}}$ if and only if ${\pi _1}(M\backslash K)$ is finitely generated.References
- R. H. Bing, Necessary and sufficient conditions that a $3$-manifold be $S^{3}$, Ann. of Math. (2) 68 (1958), 17–37. MR 95471, DOI 10.2307/1970041
- Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979–990. MR 27512, DOI 10.2307/1969408
- G. P. Scott, Compact submanifolds of $3$-manifolds, J. London Math. Soc. (2) 7 (1973), 246–250. MR 326737, DOI 10.1112/jlms/s2-7.2.246
- Arnold Shapiro and J. H. C. Whitehead, A proof and extension of Dehn’s lemma, Bull. Amer. Math. Soc. 64 (1958), 174–178. MR 103474, DOI 10.1090/S0002-9904-1958-10198-6
- Richard Skora, Cantor sets in $S^3$ with simply connected complements, Topology Appl. 24 (1986), no. 1-3, 181–188. Special volume in honor of R. H. Bing (1914–1986). MR 872489, DOI 10.1016/0166-8641(86)90060-X J. H. C. Whitehead, A certain open manifold whose group is unity, Quart. J. Math. (Oxford) 6 (1935), 268-279.
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 734-736
- MSC: Primary 57N10; Secondary 57M05, 57N30
- DOI: https://doi.org/10.1090/S0002-9939-1986-0845998-5
- MathSciNet review: 845998