A simplified proof of Heinz inequality and scrutiny of its equality
HTML articles powered by AMS MathViewer
- by Takayuki Furuta
- Proc. Amer. Math. Soc. 97 (1986), 751-753
- DOI: https://doi.org/10.1090/S0002-9939-1986-0846001-3
- PDF | Request permission
Abstract:
An operator means a bounded linear operator on a Hilbert space $H$. We give a simplified proof of the following inequality: \[ ({{\text {I}}_1})\quad |(Tx,y){|^2} \leq (|T{|^{2\alpha }}x,x)(|{T^*}{|^{2(1 - \alpha )}}y,y)\] for any operator $T$ and for any $x, y \in H$ and for any real number $\alpha$ with $0 \leq \alpha \leq 1$. In case $0 < \alpha < 1$, the equality in $({{\text {I}}_1})$ holds iff $|T{|^{2\alpha }}x$ and ${T^*}y$ are linearly dependent iff $Tx$ and $|{T^*}{|^{2(1 - \alpha )}}y$ are linearly dependent. $({{\text {I}}_1})$ is equivalent to \[ ({{\text {I}}_2})\quad |(Tx,y)| \leq ||\;|T{|^\alpha }x||\;||\;|{T^*}{|^{1 - \alpha }}y||,\], so one might believe that the equality in $({{\text {I}}_1})$ or $({{\text {I}}_2})$ would hold iff $|T{|^{2\alpha }}x$ and $|{T^*}{|^{2(1 - \alpha )}}y$ are linearly dependent or iff $|T{|^\alpha }x$ and $|{T^*}{|^{1 - \alpha }}y$ are linearly dependent, but we can give counterexamples to these mistakes. By this fact, the form of $({{\text {I}}_1})$ is more convenient than $({{\text {I}}_2})$ in order to remind us of the case when the equality in $({{\text {I}}_1})$ or $({{\text {I}}_2})$ holds.References
- J. Dixmier, Sur une inégalité de E. Heinz, Math. Ann. 126 (1953), 75–78 (French). MR 56200, DOI 10.1007/BF01343151
- Erhard Heinz, On an inequality for linear operators in a Hilbert space, Report of an international conference on operator theory and group representations, Arden House, Harriman, N. Y., 1955, National Academy of Sciences-National Research Council, Washington, D.C., 1955, pp. 27–29. Publ. 387. MR 0079139
- Tosio Kato, Notes on some inequalities for linear operators, Math. Ann. 125 (1952), 208–212. MR 53390, DOI 10.1007/BF01343117
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 751-753
- MSC: Primary 47A30
- DOI: https://doi.org/10.1090/S0002-9939-1986-0846001-3
- MathSciNet review: 846001