Rings with a bounded number of generators for right ideals
HTML articles powered by AMS MathViewer
- by William D. Blair
- Proc. Amer. Math. Soc. 98 (1986), 1-6
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848862-0
- PDF | Request permission
Abstract:
Let the ring $S$ be a finitely generated module over a subring $R$ of its center. Then it will be shown that $S$ has the property that every right ideal can be generated by a bounded number of elements if and only if $R$ has the property that every ideal can be generated by a bounded number of elements. As a corollary we show that a two-sided Noetherian affine ring satisfying a polynomial identity has the property that every right ideal can be generated by a bounded number of elements if and only if every left ideal can be generated by a bounded number of elements.References
- William D. Blair, Right Noetherian rings integral over their centers, J. Algebra 27 (1973), 187–198. MR 325679, DOI 10.1016/0021-8693(73)90173-7
- Gérard Cauchon, Anneaux semi-premiers, noethériens, à identités polynômiales, Bull. Soc. Math. France 104 (1976), no. 1, 99–111. MR 407076
- I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J. 17 (1950), 27–42. MR 33276
- David Eisenbud, Subrings of Artinian and Noetherian rings, Math. Ann. 185 (1970), 247–249. MR 262275, DOI 10.1007/BF01350264
- Arun Vinayak Jategaonkar, A counter-example in ring theory and homological algebra, J. Algebra 12 (1969), 418–440. MR 240131, DOI 10.1016/0021-8693(69)90040-4
- Daniel Mollier, Descente de la propriété noethérienne, Bull. Sci. Math. (2) 94 (1970), 25–31 (French). MR 269638
- J. C. Robson and Lance W. Small, Liberal extensions, Proc. London Math. Soc. (3) 42 (1981), no. 1, 87–103. MR 602124, DOI 10.1112/plms/s3-42.1.87
- Louis Halle Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 576061
- Judith D. Sally, Some results on multiplicity with applications to bounded and two dimensional prime bounded rings, J. Algebra 35 (1975), 224–234. MR 379484, DOI 10.1016/0021-8693(75)90047-2
- J. J. Sarraillé, Module finiteness of low-dimensional PI rings, Pacific J. Math. 102 (1982), no. 1, 189–208. MR 682051
- J. T. Stafford, Rings with a bounded number of generators for right ideals, Quart. J. Math. Oxford Ser. (2) 34 (1983), no. 133, 107–114. MR 688428, DOI 10.1093/qmath/34.1.107
- Richard G. Swan, The number of generators of a module, Math. Z. 102 (1967), 318–322. MR 218347, DOI 10.1007/BF01110912
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 1-6
- MSC: Primary 16A33; Secondary 13E05, 16A38
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848862-0
- MathSciNet review: 848862