A note on GPIs and their coefficients
HTML articles powered by AMS MathViewer
- by Charles Lanski
- Proc. Amer. Math. Soc. 98 (1986), 17-19
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848865-6
- PDF | Request permission
Abstract:
If $R$ is a prime ring satisfying a GPI, then $R$ satisfies a multilinear GPI having all its coefficients in $R$. Also, all $R$ bimodules in the Martindale quotient ring of $R$ satisfy the same multilinear GPIs.References
- I. N. Herstein, Rings with involution, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1976. MR 0442017
- Wallace S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584. MR 238897, DOI 10.1016/0021-8693(69)90029-5
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 17-19
- MSC: Primary 16A38; Secondary 16A08, 16A12
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848865-6
- MathSciNet review: 848865