Extending valuations to finite-dimensional division algebras
HTML articles powered by AMS MathViewer
- by Adrian R. Wadsworth
- Proc. Amer. Math. Soc. 98 (1986), 20-22
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848866-8
- PDF | Request permission
Abstract:
Let $D$ be a division algebra finite dimensional over its center $F$. It is shown that a (Krull) valuation $v$ on $F$ extends to a valuation on $D$ iff $\upsilon$ extends uniquely to each commutative field $K$ with $F \subseteq K \subseteq D$.References
- S. A. Amitsur, On central division algebras, Israel J. Math. 12 (1972), 408–420. MR 318216, DOI 10.1007/BF02764632
- N. Bourbaki, Éléments de mathématique. Fasc. XXX. Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1308, Hermann, Paris, 1964 (French). MR 0194450
- P. M. Cohn, On extending valuations in division algebras, Studia Sci. Math. Hungar. 16 (1981), no. 1-2, 65–70. MR 703642
- Leonard Eugene Dickson, Algebras and their arithmetics, Dover Publications, Inc., New York, 1960. MR 0111764
- Peter Draxl and Martin Kneser (eds.), $SK_{1}$ von Schiefkörpern, Lecture Notes in Mathematics, vol. 778, Springer, Berlin, 1980 (German). Seminar held at Bielefeld and Göttingen, 1976. MR 591206
- Bill Jacob and Adrian R. Wadsworth, A new construction of noncrossed product algebras, Trans. Amer. Math. Soc. 293 (1986), no. 2, 693–721. MR 816320, DOI 10.1090/S0002-9947-1986-0816320-X
- V. P. Platonov, The Tannaka-Artin problem, and reduced $K$-theory, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 2, 227–261, 469 (Russian). MR 0407082
- I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003. Corrected reprint of the 1975 original; With a foreword by M. J. Taylor. MR 1972204
- O. F. G. Schilling, The Theory of Valuations, Mathematical Surveys, No. 4, American Mathematical Society, New York, N. Y., 1950. MR 0043776, DOI 10.1090/surv/004
- J.-P. Tignol, Cyclic and elementary abelian subfields of Malcev-Neumann division algebras, J. Pure Appl. Algebra 42 (1986), no. 2, 199–220. MR 857567, DOI 10.1016/0022-4049(86)90080-0
- J. H. M. Wedderburn, On division algebras, Trans. Amer. Math. Soc. 22 (1921), no. 2, 129–135. MR 1501164, DOI 10.1090/S0002-9947-1921-1501164-3
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 20-22
- MSC: Primary 16A39; Secondary 12E15
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848866-8
- MathSciNet review: 848866