A note on a theorem of Ahern and Sarason
HTML articles powered by AMS MathViewer
- by James Dudziak
- Proc. Amer. Math. Soc. 98 (1986), 38-40
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848871-1
- PDF | Request permission
Abstract:
A strong weak* maximality theorem due to Ahern and Sarason is simply deduced from a more easily obtained and weaker maximality theorem of Garnett.References
- P. R. Ahern and Donald Sarason, The $H^{p}$ spaces of a class of function algebras, Acta Math. 117 (1967), 123–163. MR 217600, DOI 10.1007/BF02395043
- P. R. Ahern and Donald Sarason, On some hypo-Dirichlet algebras of analytic functions, Amer. J. Math. 89 (1967), 932–941. MR 221286, DOI 10.2307/2373411
- James Dudziak, The minimal normal extension problem for subnormal operators, J. Funct. Anal. 65 (1986), no. 3, 314–338. MR 826430, DOI 10.1016/0022-1236(86)90022-4
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- John Garnett, On a theorem of Mergelyan, Pacific J. Math. 26 (1968), 461–467. MR 233209
- Edgar Lee Stout, The theory of uniform algebras, Bogden & Quigley, Inc., Publishers, Tarrytown-on-Hudson, N.Y., 1971. MR 0423083
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 38-40
- MSC: Primary 46J15; Secondary 30H05, 46J30
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848871-1
- MathSciNet review: 848871