Limit boundary value problems of retarded functional-differential equations
HTML articles powered by AMS MathViewer
- by Shao Zhu Chen
- Proc. Amer. Math. Soc. 98 (1986), 46-50
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848873-5
- PDF | Request permission
Abstract:
We establish necessary and sufficient conditions assuring the existence and uniqueness of solutions of the limit boundary value problems on a half-line $[a,\infty )$ for the retarded functional equation \[ \ddot x(t) + f(t,x({g_1}(t)), \ldots ,x({g_m}(t)))h(\dot x(t)) = 0\].References
- F. V. Atkinson, On second-order non-linear oscillations, Pacific J. Math. 5 (1955), 643–647. MR 72316, DOI 10.2140/pjm.1955.5.643
- J. W. Bebernes and L. K. Jackson, Infinite interval boundary value problems for $y^{\prime \prime }=f(x,\,y)$, Duke Math. J. 34 (1967), 39–47. MR 206386, DOI 10.1215/S0012-7094-67-03404-7
- Zhong Chao Liang, The boundary value problem on an infinite interval for nonlinear differential equation of second order, Acta Math. Appl. Sinica 4 (1981), no. 3, 272–279 (Chinese, with English summary). MR 645768
- Keith W. Schrader, Boundary-value problems of second-order ordinary differential equations, J. Differential Equations 3 (1967), 403–413. MR 216058, DOI 10.1016/0022-0396(67)90040-X
- Warren E. Shreve, Boundary value problems for $y^{\prime \prime }=f(x,\,y,\,\lambda )$ on $[a,\,\infty )$, SIAM J. Appl. Math. 17 (1969), 84–97. MR 249712, DOI 10.1137/0117009
- Steven Taliaferro, On the positive solutions of $y^{\prime \prime }+\varphi (t)y^{-\lambda }=0$, Nonlinear Anal. 2 (1978), no. 4, 437–446. MR 512480, DOI 10.1016/0362-546X(78)90050-0
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 46-50
- MSC: Primary 34K10
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848873-5
- MathSciNet review: 848873