UNIQUENESS FOR SINGULAR BACKWARD PARABOLIC INEQUALITIES

ALAN V. LAIR

ABSTRACT. We prove that the only solution of the partial differential inequality
\[\left(u_t + \sum_{i=1}^{n} \left[u_x x_i + \left(\frac{k_i}{x_i} \right) u_{x_i} \right] \right)^2 \leq c \left[u^2 + |u_x|^2 \right] \]
on a bounded region with homogeneous initial and boundary conditions is the trivial one.

Introduction. In this paper we consider the differential inequality
\[(L[u])^2 \leq c \left[u^2 + |u_x|^2 \right], \quad (x, t) \text{ in } Q, \]
where
\[L[u] = u_t + A[u], \quad A[u] = \sum_{i=1}^{n} \left[u_{x_i} x_i + \left(\frac{k_i}{x_i} \right) u_{x_i} \right], \]
\[Q_T = D \times (0, T) \subset R^{n+} \times (0, T), \quad R^{n+} = \{(x_1, \ldots, x_n): x_i > 0, 1 \leq i \leq n\}, \]
c, k_1, \ldots, k_n are arbitrary constants and |u_x| is the euclidean norm of the spatial gradient of u. We assume that the set D is bounded with piecewise smooth boundary B, which in general has a nonempty intersection with each of the faces x_i = 0. We show that the only solution of (0.1) with homogeneous boundary and initial conditions is the trivial one. In some instances (which are dictated by the values of the k_i) the homogeneity condition on the boundary may be relaxed somewhat to include only part of the boundary. The boundary conditions may be either of the Dirichlet or Neumann types.

Recently Ames [3] and Young [12] proved uniqueness for the initial-boundary value problem of the equation
\[L[u] + c(t) u = 0 \]
in Q_T with the set D = \{(x_1, \ldots, x_n): 0 < x_i < a_i, 1 \leq i \leq n\}. Both proofs work equally well for both Dirichlet and Neumann boundary conditions. However the proofs in these papers depend a great deal on the form of (0.2). In particular, neither result applies to equations of the form
\[L[u] = f(x, t, u, u_x) \]
unless the function f has the particular form $c(t)u$. Our result applies for any function f in (0.3) which is uniformly Lipschitz continuous in both u and u_x.

Young's proof [12] involves the use of a method similar to that developed in the study of uniqueness of boundary value problems for the hyperbolic equations. (See e.g. [11] and its references.) The method involves the calculation of a complete set of eigenfunctions related to the operator A, multiplication of equation (0.2) by an arbitrary eigenfunction, integrating over D, and showing that the inner product of the eigenfunction and $u(\cdot, t)$ is zero, thus producing $u = 0$. One of the problems with Young's results is that all of the k_i's are required to have the same sign. Ames [3] overcomes this difficulty by using a logarithmic convexity argument [10]. However, in order to do this, Ames needs strong requirements placed on the function at the face $x_i = 0$ if $k_i \leq -1$ in that uu_{x_i} must approach zero faster than $x_i^{k_i}$. Young [12] does not need such a condition since the nature of the eigenfunctions at the face $x_i = 0$ is well known, and thus not as much a priori knowledge about the function u is needed at that face.

In the present paper we show that inequality (0.1) has only the trivial solution under basically the same hypothesis as used in Ames [3]. However, it should be noted that although some of these conditions are not expressly given in [3], it is clear from the proofs given therein that they are required.

Physically, when n is unity and $k = k_1$ is a positive integer, the operator L represents the backward diffusion operator in $k + 1$ space in which radial symmetry is assumed. For this case, several authors have contributed results for the forward-in-time case. Among these are Alexiades [1, 2], who studies the well-posedness of the boundary value problem for the forward equation

$$L_0[u] = u_t - A[u] = f(x, t),$$

and Arena [4], who considers an alternative form of the homogeneous equation $L_0[u] = 0$ given by $u_t = xu_{xx}$ for $k = -1$ and $c = 0$ and studies the Cauchy problem. Likewise the Fokker-Planck equation [6] takes on a form similar to Arena's except that lower order terms are included, and it too, for the backward-in-time case, can be put into the form of (0.3). Applications and derivations of related equations in statistics can be found in [5, Chapter X].

1. **Main results.** Our method of proof involves a method originally reported in [9] and used later in [7, Chapter 6] and [8]. However because of the singular coefficient in the principal part of the operator L, very significant changes in the method must be incorporated into the present problem. One of these changes involves, oddly enough, a time scale change which introduces a time degeneracy into the principal part of the operator L. Let $s^2 = t$, $v(x, s) = u(x, t)$ and note that

$$2su_t(x, t) = v_x(x, s).$$

Now multiply (0.1) by s^2, use (1.1) and multiply by 4 to get

$$\left(L_s[v]\right)^2 \leq 4c_0s^2v^2 + 4c_1s^2|v_x|^2,$$
where \(L_s[v] \equiv v_s + 2A_s[v] \) and \(A_s[v] \equiv sA[v] \). Thus our problem now becomes one of showing that the only solution \(v \) of (1.2) on the set \(Q_S \) \((S^2 = T)\) with homogeneous boundary and initial conditions is the trivial one.

We use the following notation with \(p(x) = \prod_{i=1}^{n} x_i^{k_i} \):

\[
(u, w) = \int_{Q_S} u(x, s)w(x, s)p(x) \, dx \, ds,
\]

\[
\|w\|^2 = (w, w) \quad \text{and} \quad \|w_x\|^2 = \sum_{i=1}^{n} (w_{x_i}, w_{x_i}).
\]

We let \(P_S \) be the set of functions \(w \) (= \(w(x, s) \)) in \(C^1(Q_S) \cap C^2(Q_S) \) such that \(pw|w_x| \) and \(pw|w_p| \) are in \(C(Q_S) \) (or more rigorously, there exist functions \(F \) and \(G \) in \(C(Q_S) \) such that \(F = pw|w_x| \) and \(G = pw|w_p| \) on \(Q_S \)) and the norms \(\|v\|, \|v_x\|, \) and \(\|v_{x_i}\| \) are finite. We let \(P_S^0 \) denote the set of functions \(w \) in \(P_S \) for which

\[
w(x, 0) = w(x, T) = 0 \quad \text{on} \quad D
\]

and

\[
pww_N = 0 \quad \text{on} \quad B \times [0, S].
\]

Here \(w_N \) denotes the derivative normal to \(B \). Finally, we let \(r(s) = s + b \), where \(b \) is an arbitrary positive number.

Lemma. If \(v \in P_S^0 \), then for any positive integer \(m \) we have

\[
\|r^{-m}L_s[v]\|^2 \geq m\|r^{-m-1}v\|^2 + 2\|r^{-m}v_x\|^2.
\]

Proof. Let \(z(x, s) = r(s)^{-m}v(x, s) \) and note that the identity

\[
r^{-m}L_s[v] = r^{-m}L[r^mz] = z_s + mr^{-1}z + 2A_z[z]
\]

may be used to obtain

\[
\|r^{-m}L_s[v]\|^2 = \|z_s\|^2 + 4(z_s, A_z[z]) + 2m(z_s, r^{-1}z) + \|mr^{-1}z + 2A_z[z]\|^2
\]

\[
\geq 4(z_s, A_z[z]) + 2m(z_s, r^{-1}z).
\]

We now simplify the last two expressions in (1.6). In the first of these, we use the identity \(pA_z[z] = \sum_{i=1}^{n} s(pz_{x_i})_{x_i} \) to obtain

\[
4(z_s, A_z[z]) = 4 \sum_{i=1}^{n} \int_{Q_S} sz_s(pz_{x_i})_{x_i} \, dx \, ds.
\]

We now integrate the right side of (1.7) by parts on \(x \), then on \(s \) using (1.3) and (1.4) in the process, to get

\[
4(z_s, A_z[z]) = -4 \sum_{i=1}^{n} \int_{Q_S} sz_{sx_i}z_{sx_i} \, p \, dx \, ds
\]

\[
= -2 \int_{Q_S} s \left(\int_{Q_S} z_x \right)^2 p \, dx \, ds = 2\|z_x\|^2 = 2\|r^{-m}v_x\|^2.
\]

Notice that for the above integration by parts to be valid, we need \(pzz_N = 0 \) on \(B \times [0, S] \), which is indeed true for all \(z \in P_S^0 \). Similarly, in the last expression in
we may integrate by parts with respect to \(s \) and use (1.3) to get

\[
2m(z_s, r^{-1}z) = m \int_{Q_s} r^{-1}(z^2) p \, dx \, ds
\]

\[
= m \int_{Q_s} r^{-2}z^2 p \, dx \, ds = m \| r^{-m-1}v \|^2.
\]

Substituting (1.8) and (1.9) into (1.6) yields (1.5). This completes the proof.

Theorem. Suppose \(v \in P_s \) and satisfies (1.2) as well as the conditions

\[(1.10) \quad v(x,0) = Q \quad \text{on } D, \]
\[(1.11) \quad pvv_N = 0 \quad \text{on } B \times [0, S]. \]

Then \(v = 0 \) on \(Q_s \).

Remark. It is interesting to note that, for each \(k_i > 0 \), (1.11) implies that no condition on \(v \) (or \(v_N \)) is required on the part of the boundary \(B \) which intersects the fact \(x_i = 0 \). On the other hand, if \(k_i \leq -1 \), a strong boundary condition on \(v \) (or \(v_N \)) is needed at that face. In the event that \(-1 < k_i \leq 0 \), either homogeneous Dirichlet or Neumann boundary conditions at the face \(B \cap \{ x_i = 0 \} \) will ensure that (1.11) holds.

Proof of the theorem. To prove the desired result, it suffices to show that \(v(x,s) = 0 \) for all \((x,s) \in Q_s \) for some positive \(S \) depending only on the constant \(c \) from (0.1), for then analysis very similar to that below may be used to show that \(v \) vanishes on \([S, 2S], [2S, 3S], \ldots \) to obtain \(v = 0 \) on \(Q_s \) for any \(S > 0 \). In particular, we shall need \(S^2 \leq 2/c \) provided \(c > 0 \). If \(c = 0 \), then the analysis works for arbitrary finite \(S \).

Now let \(s_1 \) be an arbitrary number in \((0, S)\). We shall show that \(v = 0 \) on \(D \times [0, s_1] \). For this purpose choose \(s_2 \) and \(s_3 \) such that \(0 < s_1 < s_2 < s_3 < S \). Let \(g \) be a real-valued, infinitely differentiable function defined on \([0, S]\) such that \(g(s) = 1 \) for \(0 \leq s \leq s_2 \), \(g(s) = 0 \) for \(s_3 < s \leq S \), and \(0 < g(s) < 1 \) for \(s_2 < s < s_3 \). Now set \(w(x,s) = g(s)v(x,s) \) and observe that \(w \in P_s^0 \). Using the lemma and the fact that \(w = v \) on \([0, s_2]\), we may use estimates similar to those of inequality (2.16) of [8] to get

\[
I_m = \left(s_2 + b \right)^{-2m} \int_{s_2}^{s_3} \int_D \left(L_s[w] \right)^2 p \, dx \, ds
\]

\[
\geq \int_0^{s_2} \int_D (m - cb^2s^2)r^{-2m-2}v^2 p \, dx \, ds
\]

\[
+ \int_0^{s_2} \int_D (2 - cs^2)r^{-2m}|v_x|^2 p \, dx \, ds.
\]

Since \(s_2^2 < S^2 \leq 2/c \), the second integral on the right side of (1.12) is nonnegative. Similarly, using the estimates \(m - cb^2s^2 \geq m - 2b^2 \) and \(r^{-2m-2} \geq (s_1 + b)^{-2m-2} \),
for $0 \leq s \leq s_1$ in the first integral on the right side of (1.12) gives

\[(1.13)\quad I_m \geq (m - 2b^2) \int_0^{s_2} \int_D r^{-2m-2}v^2 p \, dx \, ds \]

\[\quad \geq (m - 2b^2)(s_1 + b)^{-2m-2} \int_0^{s_2} \int_D v^2 p \, dx \, ds \]

for $m > 2b^2$. Rearranging the terms in (1.13) now yields

\[(1.14)\quad (s_1 + b)^{2m+2}(s_2 + b)^{-2m}(m - 2b^2)^{-1} \int_{s_2}^{s_1} \int_D (L_s[w])^2 p \, dx \, ds \geq \int_0^{s_1} \int_D v^2 p \, dx \, ds.\]

Letting m approach infinity makes the left side of (1.14) approach zero. Since the right side is independent of m, it must be zero. Thus $v = 0$ on $D \times [0, s_1]$, and since s_1 was arbitrarily chosen on $[0, S)$, we have $v = 0$ on $D \times [0, S]$. This completes the proof.

REFERENCES

Department of Mathematics and Computer Science (AFIT/ENC), Air Force Institute of Technology, Wright-Patterson AFB, Ohio 45433