On functions whose derivative has positive real part
HTML articles powered by AMS MathViewer
- by D. K. Thomas
- Proc. Amer. Math. Soc. 98 (1986), 68-70
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848877-2
- PDF | Request permission
Abstract:
Let $R$ be the class of normalised analytic functions $f$, defined in the open disc $D$, such that Re $f’(z) > 0$ for $z \in D$. For $f \in R$, a best possible growth estimate for $|zf’(z)/f(z)|$ is obtained.References
- J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (2) 17 (1915), no. 1, 12–22. MR 1503516, DOI 10.2307/2007212
- T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532–537. MR 140674, DOI 10.1090/S0002-9947-1962-0140674-7
- Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
- Stephan Ruscheweyh, Nichtlineare Extremalprobleme für holomorphe Stieltjesintegrale, Math. Z. 142 (1975), 19–23 (German). MR 374406, DOI 10.1007/BF01214844
- J. B. Twomey, On the derivative of a starlike function, J. London Math. Soc. (2) 2 (1970), 99–110. MR 254227, DOI 10.1112/jlms/s2-2.1.99
- J. B. Twomey, On starlike functions, Proc. Amer. Math. Soc. 24 (1970), 95–97. MR 249600, DOI 10.1090/S0002-9939-1970-0249600-3
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 68-70
- MSC: Primary 30D50; Secondary 30C45
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848877-2
- MathSciNet review: 848877