Algebra direct sum decomposition of $C_ R(X)$
HTML articles powered by AMS MathViewer
- by R. D. Mehta and M. H. Vasavada
- Proc. Amer. Math. Soc. 98 (1986), 71-74
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848878-4
- PDF | Request permission
Abstract:
Let $A$ and $B$ be closed subalgebras of ${C_R}(X)$ with $1 \in A$ and $1 \notin B$. We give necessary and sufficient conditions for $A \oplus B = {C_R}(X)$.References
- W. G. Bade, The Banach space $C(S)$, Lecture Notes, vol. 26, Aarhus Univ., Aarhus, 1971.
- Stephen D. Fisher, The decomposition of $C_{r}(K)$ into the direct sum of subalgebras, J. Functional Analysis 31 (1979), no. 2, 218–223. MR 525952, DOI 10.1016/0022-1236(79)90062-4
- Donald E. Marshall and Anthony G. O’Farrell, Uniform approximation by real functions, Fund. Math. 104 (1979), no. 3, 203–211. MR 559174, DOI 10.4064/fm-104-3-203-211 Z. Semadeni, Banach spaces of continuous functions, Vol. 1, Monografie Mat., Warszawa, 1971.
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 71-74
- MSC: Primary 46J10; Secondary 46E25
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848878-4
- MathSciNet review: 848878