Numerical invariants for semiconjugacy of homeomorphisms of the circle
HTML articles powered by AMS MathViewer
- by Shigenori Matsumoto
- Proc. Amer. Math. Soc. 98 (1986), 163-168
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848896-6
- PDF | Request permission
Abstract:
We give numerical invariants for deciding when two actions of a given group on the circle are semiconjugate. We give conditions for vanishing of an invariant called bounded real Euler class. We also determine endomorphisms of the discrete group ${\text {PSL}}(2,{\mathbf {R}})$.References
- E. Ghys, Groupes d’homeomorphismes du cercle et cohomologie borneé, preprint, Université des Sciences et Techniques de Lille I.
- Michael Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 5–99 (1983). MR 686042 G. Hector and U. Hirsch, Introduction to the geometry of foliations, Part B, Aspects of Math. (1983).
- Shigenori Matsumoto and Shigeyuki Morita, Bounded cohomology of certain groups of homeomorphisms, Proc. Amer. Math. Soc. 94 (1985), no. 3, 539–544. MR 787909, DOI 10.1090/S0002-9939-1985-0787909-6
- Chih Han Sah and John B. Wagoner, Second homology of Lie groups made discrete, Comm. Algebra 5 (1977), no. 6, 611–642. MR 646087, DOI 10.1080/00927877708822184
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 163-168
- MSC: Primary 58F35; Secondary 54H20, 57R30, 57S25
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848896-6
- MathSciNet review: 848896