A remark on weak convergence in the dual of a $C^ \ast$-algebra
HTML articles powered by AMS MathViewer
- by Alain Belanger and Joe Diestel PDF
- Proc. Amer. Math. Soc. 98 (1986), 185-186 Request permission
References
- Charles A. Akemann, The dual space of an operator algebra, Trans. Amer. Math. Soc. 126 (1967), 286–302. MR 206732, DOI 10.1090/S0002-9947-1967-0206732-8
- B. Beauzamy, Opérateurs uniformément convexifiants, Studia Math. 57 (1976), no. 2, 103–139. MR 430844, DOI 10.4064/sm-57-2-103-139
- Bernard Beauzamy, Banach-Saks properties and spreading models, Math. Scand. 44 (1979), no. 2, 357–384. MR 555227, DOI 10.7146/math.scand.a-11818
- W. J. Davis, T. Figiel, W. B. Johnson, and A. Pełczyński, Factoring weakly compact operators, J. Functional Analysis 17 (1974), 311–327. MR 0355536, DOI 10.1016/0022-1236(74)90044-5
- P. Erdős and M. Magidor, A note on regular methods of summability and the Banach-Saks property, Proc. Amer. Math. Soc. 59 (1976), no. 2, 232–234. MR 430596, DOI 10.1090/S0002-9939-1976-0430596-1
- Hans Jarchow, On weakly compact operators on $C^\ast$-algebras, Math. Ann. 273 (1986), no. 2, 341–343. MR 817887, DOI 10.1007/BF01451412
- Albrecht Pietsch, Operator ideals, North-Holland Mathematical Library, vol. 20, North-Holland Publishing Co., Amsterdam-New York, 1980. Translated from German by the author. MR 582655
- W. Szlenk, Sur les suites faiblement convergentes dans l’espace $L$, Studia Math. 25 (1965), 337–341 (French). MR 201956, DOI 10.4064/sm-25-3-337-341
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728, DOI 10.1007/978-1-4612-6188-9
Additional Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 185-186
- MSC: Primary 46L05; Secondary 46L30, 47D35
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848901-7
- MathSciNet review: 848901