Prabir Roy’s space $\Delta$ as a counterexample in shape theory
HTML articles powered by AMS MathViewer
- by M. Alonso Moron
- Proc. Amer. Math. Soc. 98 (1986), 187-188
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848902-9
- PDF | Request permission
Abstract:
In this note we use the space $\Delta$ in order to prove that a result concerning movability and mutational retractions cannot be transferred from the compact to the arbitrary metrizable case.References
- K. Borsuk, Theory of shape, Lecture Notes Series, No. 28, Aarhus Universitet, Matematisk Institut, Aarhus, 1971. MR 0293602
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- Ralph H. Fox, On shape, Fund. Math. 74 (1972), no. 1, 47–71. MR 296914, DOI 10.4064/fm-74-1-47-71
- S. Godlewski, Mutational retracts and extensions of mutations, Fund. Math. 84 (1974), no. 1, 47–65. (errata insert). MR 345061, DOI 10.4064/fm-84-1-47-65
- Peter Nyikos, Prabir Roy’s space $\Delta$ is not $N$-compact, General Topology and Appl. 3 (1973), 197–210. MR 324657, DOI 10.1016/0016-660X(72)90012-8
- Prabir Roy, Nonequality of dimensions for metric spaces, Trans. Amer. Math. Soc. 134 (1968), 117–132. MR 227960, DOI 10.1090/S0002-9947-1968-0227960-2
- Katsuro Sakai, Some properties of MAR and MANR, Tohoku Math. J. (2) 30 (1978), no. 3, 351–366. MR 509021, DOI 10.2748/tmj/1178229975
- S. Spież, A majorant for the family of all movable shapes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 615–620 (English, with Russian summary). MR 334146
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 187-188
- MSC: Primary 54F43; Secondary 54F45, 54G20
- DOI: https://doi.org/10.1090/S0002-9939-1986-0848902-9
- MathSciNet review: 848902