On binomial units of certain cubic field
HTML articles powered by AMS MathViewer
- by Kiyota Ozeki
- Proc. Amer. Math. Soc. 98 (1986), 215-216
- DOI: https://doi.org/10.1090/S0002-9939-1986-0854021-8
- PDF | Request permission
Abstract:
Scarowsky has conjectured about a binomial unit in a cubic field. We discuss a relation between binomial units and a diophantine equation.References
- B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree, Translations of Mathematical Monographs, Vol. 10, American Mathematical Society, Providence, R.I., 1964. MR 0160744
- B. Gordon and S. P. Mohanty, On a theorem of Delaunay and some related results, Pacific J. Math. 68 (1977), no. 2, 399–409. MR 463109
- Manny Scarowsky, On units of certain cubic fields and the Diophantine equation $x^{3}+y^{3}+z^{3}=3$, Proc. Amer. Math. Soc. 91 (1984), no. 3, 351–356. MR 744627, DOI 10.1090/S0002-9939-1984-0744627-7
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 215-216
- MSC: Primary 11R16; Secondary 11R27
- DOI: https://doi.org/10.1090/S0002-9939-1986-0854021-8
- MathSciNet review: 854021