$LU$-factorization of operators on $l_ 1$
HTML articles powered by AMS MathViewer
- by Kevin T. Andrews, Philip W. Smith and Joseph D. Ward
- Proc. Amer. Math. Soc. 98 (1986), 247-252
- DOI: https://doi.org/10.1090/S0002-9939-1986-0854027-9
- PDF | Request permission
Abstract:
Necessary and sufficent conditions are obtained for LU-factorization of operators on ${l_1}$. In particular it is shown that uniform invertibility of the compressions of the operator is not sufficient to insure an LU-factorization of the operator, thus answering a question of de Boor, Jia, and Pinkus.References
- Kevin T. Andrews and Joseph D. Ward, $LU$-factorization of order bounded operators on Banach sequence spaces, J. Approx. Theory 48 (1986), no.ย 2, 169โ180. MR 862232, DOI 10.1016/0021-9045(86)90001-8 M. A. Barkar and I. C. Gohberg, On factorization of operators relative to a discrete chain of projectors in Banach space, Amer. Math. Soc. Transl. (2) 90 (1970), 81-103.
- C. de Boor, Rong Qing Jia, and A. Pinkus, Structure of invertible (bi)infinite totally positive matrices, Linear Algebra Appl. 47 (1982), 41โ55. MR 672731, DOI 10.1016/0024-3795(82)90225-7 S. D. Conte and C. de Boor, Elementary numerical analysis, McGraw-Hill, New York, 1972.
- Stephen Demko, Inverses of band matrices and local convergence of spline projections, SIAM J. Numer. Anal. 14 (1977), no.ย 4, 616โ619. MR 455281, DOI 10.1137/0714041
- I. C. Gohberg and I. A. Felโฒdman, Convolution equations and projection methods for their solution, Translations of Mathematical Monographs, Vol. 41, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by F. M. Goldware. MR 0355675
- P. W. Smith and J. D. Ward, Factorization of diagonally dominant operators on $l_1$, Illinois J. Math. 29 (1985), no.ย 3, 370โ381. MR 786727, DOI 10.1215/ijm/1256045629
- Angus E. Taylor, Introduction to functional analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0098966
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 247-252
- MSC: Primary 47A68; Secondary 47B37
- DOI: https://doi.org/10.1090/S0002-9939-1986-0854027-9
- MathSciNet review: 854027