Four counterexamples to Bloch’s principle
HTML articles powered by AMS MathViewer
- by Lee A. Rubel
- Proc. Amer. Math. Soc. 98 (1986), 257-260
- DOI: https://doi.org/10.1090/S0002-9939-1986-0854029-2
- PDF | Request permission
Abstract:
In this note, four counterexamples are given to Bloch’s heuristic principle in complex function theory. The first involves univalent functions, the second certain autonomous differential equations, and the remaining two involve certain autonomous differential expressions omitting certain values.References
- Chuang Chi-tai, Étude sur les familles normales et les familles quasi-normales de fonctions méromorphes, Rend. Cir. Mat. Palermo 62 (1938), 1-80.
- W. K. Hayman, Research problems in function theory, The Athlone Press [University of London], London, 1967. MR 0217268 Ku Yung-hsing, Un critère de normalité des familles de fonctions méromorphies, Sci. Sinica, special issue 98 (1979), 267-274. (Chinese)
- J. K. Langley, On normal families and a result of Drasin, Proc. Roy. Soc. Edinburgh Sect. A 98 (1984), no. 3-4, 385–393. MR 768358, DOI 10.1017/S0308210500013548
- David Minda, A heuristic principle for a nonessential isolated singularity, Proc. Amer. Math. Soc. 93 (1985), no. 3, 443–447. MR 773999, DOI 10.1090/S0002-9939-1985-0773999-3
- Abraham Robinson, Metamathematical problems, J. Symbolic Logic 38 (1973), 500–516. MR 337471, DOI 10.2307/2273049
- Le Yang, Normal families and differential polynomials, Sci. Sinica Ser. A 26 (1983), no. 7, 673–686. MR 721287
- Lo Yang, Meromorphic functions and their derivatives, J. London Math. Soc. (2) 25 (1982), no. 2, 288–296. MR 653387, DOI 10.1112/jlms/s2-25.2.288
- Lawrence Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), no. 8, 813–817. MR 379852, DOI 10.2307/2319796
- Lawrence Zalcman, Modern perspectives on classical function theory, Rocky Mountain J. Math. 12 (1982), no. 1, 75–92. MR 649740, DOI 10.1216/RMJ-1982-12-1-75
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 257-260
- MSC: Primary 30D45
- DOI: https://doi.org/10.1090/S0002-9939-1986-0854029-2
- MathSciNet review: 854029