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A UNIVERSAL EXHAUSTING DOMAIN

B. L. FRIDMAN

Abstract. A bounded domain DcC"  is constructed such that every domain

G c C" is a monotone union of biholomorphic images of D.

I. Introduction. It is widely known that two domains in C", « > 1, are very rarely

biholomorphically equivalent. In this paper we construct a domain D c C, « > 1,

that can be used to approximate any domain in C" and therefore is "almost

equivalent" to any domain in C".

Let D, G be domains in C". We will say that G can be exhausted by D if for

every compact K c G there exists a biholomorphic imbedding F: D -» G such that

F(D) D K.

Given D the question is to describe such domains G that can be exhausted by D.

Related questions are discussed in [1-5]. If G is a complete hyperbolic manifold, the

following two results are known. If D is a ball, polydisk or any bounded homoge-

neous domain, then there is only one choice of G, that is G is biholomorphically

equivalent to D (see [2, 4]). If D is strictly pseudoconvex with a C3 boundary, then

G is biholomorphically equivalent to either D or to B, the unit ball in C" (see [4]).

In this paper we are going to construct a universal exhausting domain.

Theorem 1. There exists a bounded domain D C C, « > 1, such that every domain

G c C" can be exhausted by D.

Corollary 1. There exists a bounded domain DcC" such that every domain

G a C is a monotone union of biholomorphic images of D.

This means that G = \J?.i FS(D), where Fs: D -* G is a biholomorphic imbed-

ding and FS(P) C Fs+l(D) for all s.

The construction of a universal domain allows us also to prove

Theorem 2. There exist two bounded domains Dv D2 in C such that each of them

can be exhausted by the other but they are not biholomorphically equivalent.

II. Construction of a universal exhausting domain. We use the following notations.

If z g C", n > 1, then z = (zv z'), where z' = (z2,..., zn). B(z, r)= {w g C|

\w - z\< r); B = B(0,1), the unit ball in C. 3D is the boundary of D. p, q are

points on dB, p = (l,0,...,0),q= -p.
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Aut(B) is the group of holomorphic automorphisms of B. Information about the

structure and properties of Aut(5) can be found in [6].

1. Lemma 1. For any e > 0 and R > 0 there exist r > 0 and T G Aut(2?) such that

(1.1) R > r > 0,

(1.2) T(B\B(p,R))czB(q,E),

(13)T(B(p,r)nB)rzB(p,E).

Proof. Consider for 0 < X < 1, Tx g Aut(fi),

One can see that for z = (z,, z') g V = B\B(p, R), Rez1 < 1 — v, where v > 0.

Therefore, when \ -» 1, TX(V) -» q uniformly on V. So, for given e > 0 we can find

X0, T = Tx such that (1.2) is satisfied. (1.1) and (1.3) can now be satisfied by

choosing a small enough r > 0. It is possible because T(p) = p and T is continuous

at p.

2. Lemma 2. For any domain U which is a finite union of open balls, U =

U^Li B(zs, rs), and any compact K c U, there exist an e > 0 and F: U -> C", F is

holomorphic, such that

(2.1) F(U) Pi B is connected,

(2.2) W(e)z> F(K), where W(e) = B\(B(p, e) U B(q, e)),

(23)F(U)z>B(p,E)UB(q,E),

(2.4) F'1 is one-to-one onF(U)C\ B.

Proof. (1) First we take a ball of a minimal radius that contains U. Without any

loss of generality we can assume that this ball is the unit ball B. One can prove now

that dB n 3f7 contains at least two different points f, n.

(2) Now we find a T g Aut(ß) such that Tf = p, Tn = q. T is analytic in a

neighborhood B0 of B.

(3) We find now such a small 8 > 0 that if we introduce </>s: C -» C"; <f>8:

z •-» (1 + 8)z, then <¡>S(U) has the following properties:

(a) *,(i/) c B0,

(b) <t>s(U) n 5 is connected,

(c) <i»fi([/) n B d <!»,(/:).

(4) We take now F = T°<j>s.

(2.1) and (2.4) follow from the construction of F. The existence of an e > 0 such

that (2.2) and (2.3) are satisfied follows from the facts that (¡>S(U) 3 f, n, and

therefore F(U) 3 p, q, that F(K) c B, and that F(U) is open.

3. Let as before a domain t/ = (J?=l B(z', r¡).

We take
N   _

Ks= (J B(z',r,.-l/i).
í=i

( Ä^} is a sequence of compacts in U such that

(a) Ks c A^J+1 for every s > 1.

(bíU^.AT^Í/.
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(c) If K is any compact in U, then there exists an s such that K c Ks.

Let 1 > R > r > 0. Denote, for f g dB,

D(R,r,$)= [B(ï,r)\B(ï,r)\ ni.

0 < R < 1 and a point f g dB are now given. U = Uf_, K, is from above.

Lemma 3. There exist sequences [Rs] and {rs} and closed sets Vs, 1 ^ s < oo,

such that, for all s > 1,

(3.1) Rr = R,

(3.2) Rs > rs > Rs+1 > 0,

(3.3) Vs c Ds, where Ds = D(RS, rs, £).

(3.4) There exists a biholomorphic imbedding <j>s: (B \ Vs) -» Usuch that

<t>s(Ds\Vs)^Ks.

(3.5) 5 \ Fä is connected.

Proof. Using a unitary transformation (if needed), we may assume f = p.

We will construct Rs by induction. For every Rs we construct rs, Vs, <¡>s and then

Rs+V

For í = 1 we take Ä, = R. Suppose Rs has been constructed. Using Lemma 2 we

can find F = Fs: U -» C" such that (2.1)-(2.4) hold for some e = e^ > 0 and

K = Ks. Applying Lemma 1 now for es and Rs we find r = rs > 0 and 7/ = Ts g

Aut(B) such that (1.1)-(1.3) hold. From (1.2), (1.3) and (2.2) we find

Ts(Ds)^W(es)^Fs(Ks).

We choose now Vs = Ta\W(es) \Fs(U)), <¡>s = F~l ° Ts and Rs+1 is any positive

number less than rs.

Properties (3.1)—(3.5) can be checked now by using (2.1)-(2.4).

4. Consider the set S of all such domains U each of which is a finite union of open

balls in C" with centers at rational points and rational radii. Evidently, S is

countable. S = { Uu U2,..., Um,... )

5. We set, for m > 1, Im = (exp(7ri/m),0,.. .,0) g dB. Choose now numbers

R(Sm), m>\, such that ÄtfJ > 0 and B(fM, ÄtfJ) n S(f„ Ä(f,)) = 0 if m # 5.
One can take, say, R(Çm) = |fm+i _ fml/2- For each m we use now the paragraph 3

to represent Um = U"=1 Kms and then Lemma 3 (where f = fm, i? = Ä(fm)) to find

K   and <i>   . Letr mi   ***»^   T*!71J*   A^wl-

00

/) = B\   U   ^-
m,s=l

Connectedness of D follows from the construction of all Vms (each Vms lies in a

different open set) and (3.5). The universal property of D follows from the

following. Given a domain GcC" and a compact K c G we can always find m, s

such that f7m g S, G z> [7m d A^mj d A". From the construction and (3.4) one can

conclude now that <j>ms: D -» Um is a biholomorphic imbedding and <#>mj(.D) 3 ATmj.

So, G 3 <i»mî(Z)) 3 A.
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III. 1. Proof of Theorem 1 follows from the construction of D and was presented

above.

2. Proof of the Corollary 1. One can always represent a domain G as

G = Uf.jG, such that, for all s > 1,

(a) Gs is a subdomain in G,

(b) Gs is a compact set in G,

(c) GJ+1 3 6V

Now using Theorem 1  take Fs:   D -* Gi+l   such that  Fs  is a biholomorphic

imbedding and FS(D) 3 Gs. Eviently, FJ+1(D) 3 FS(D) and G = \J™=lFs(D).

3. Proof of Theorem 2. ^ was constructed in Lemma 3. One can see that we can

require in addition to (3.1)—(3.5) the following: Vs has no isolated points. Actually if

we take Vs constructed before and add sufficiently small neighborhoods of its

isolated points the closure of the new set will still satisfy (3.3)—(3.5). Now, using this

we see that a domain D1 = D can be constructed in such a way that its boundary

does not have any isolated points, but D, still satisfies Theorem 1. Let a g Dv

choose D2 = Dl\{a). D2 will also be a universal exhausting domain.

Since Dx and D2 both are universal exhausting domains they are mutually

exhaustable.

Now we need to prove that D2 is not holomorphically equivalent to Dv If it is,

then let F: D2 -» Dl be a biholomorphism. F has a removable singularity at

a g dD2. So, F can be uniquely extended to {a) as a holomorphic map. Let

F(a) = b g Dx. b g Dx since F is an open map and 3D, has no isolated singulari-

ties. Let c g D2 be such a point that F(c) = b. Now if We C\ Wa = 0 are neighbor-

hoods of c and a, respectively, F(WC) n F(Wa) is not empty and open. This

contradicts the suggestion that F is one-to-one on D2.
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