A UNIVERSAL EXHAUSTING DOMAIN

B. L. FRIDMAN

ABSTRACT. A bounded domain $D \subset \mathbb{C}^n$ is constructed such that every domain $G \subset \mathbb{C}^n$ is a monotone union of biholomorphic images of D.

I. Introduction. It is widely known that two domains in \mathbb{C}^n , n > 1, are very rarely biholomorphically equivalent. In this paper we construct a domain $D \subset \mathbb{C}^n$, $n \ge 1$, that can be used to approximate any domain in \mathbb{C}^n and therefore is "almost equivalent" to any domain in \mathbb{C}^n .

Let D, G be domains in \mathbb{C}^n . We will say that G can be exhausted by D if for every compact $K \subset G$ there exists a biholomorphic imbedding $F: D \to G$ such that $F(D) \supset K$.

Given D the question is to describe such domains G that can be exhausted by D. Related questions are discussed in [1-5]. If G is a complete hyperbolic manifold, the following two results are known. If D is a ball, polydisk or any bounded homogeneous domain, then there is only one choice of G, that is G is biholomorphically equivalent to D (see [2, 4]). If D is strictly pseudoconvex with a C^3 boundary, then G is biholomorphically equivalent to either D or to B, the unit ball in C^n (see [4]).

In this paper we are going to construct a universal exhausting domain.

THEOREM 1. There exists a bounded domain $D \subset \mathbb{C}^n$, $n \ge 1$, such that every domain $G \subset \mathbb{C}^n$ can be exhausted by D.

COROLLARY 1. There exists a bounded domain $D \subset \mathbb{C}^n$ such that every domain $G \subset \mathbb{C}^n$ is a monotone union of biholomorphic images of D.

This means that $G = \bigcup_{s=1}^{\infty} F_s(D)$, where $F_s: D \to G$ is a biholomorphic imbedding and $F_s(D) \subset F_{s+1}(D)$ for all s.

The construction of a universal domain allows us also to prove

THEOREM 2. There exist two bounded domains D_1 , D_2 in \mathbb{C}^n such that each of them can be exhausted by the other but they are not biholomorphically equivalent.

II. Construction of a universal exhausting domain. We use the following notations. If $z \in \mathbb{C}^n$, n > 1, then $z = (z_1, z')$, where $z' = (z_2, \dots, z_n)$. $B(z, r) = \{w \in \mathbb{C} | |w - z| < r\}$; B = B(0, 1), the unit ball in \mathbb{C}^n . ∂D is the boundary of D. p, q are points on ∂B , $p = (1, 0, \dots, 0)$, q = -p.

Received by the editors September 24, 1985.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 32H99.

Aut(B) is the group of holomorphic automorphisms of B. Information about the structure and properties of Aut(B) can be found in [6].

- 1. LEMMA 1. For any $\varepsilon > 0$ and R > 0 there exist r > 0 and $T \in Aut(B)$ such that (1.1) R > r > 0,
- $(1.2) T(B \setminus B(p,R)) \subset B(q,\varepsilon),$
- $(1.3) \ T(\overline{B(p,r)} \cap B) \subset B(p,\varepsilon).$

PROOF. Consider for $0 < \lambda < 1$, $T_{\lambda} \in Aut(B)$,

$$T_{\lambda}z = \left\{ \frac{z_1 - \lambda}{1 - z_1 \lambda}, \sqrt{1 - \lambda^2} \frac{z'}{1 - z_1 \lambda} \right\}.$$

One can see that for $z=(z_1,z')\in V=B\setminus B(p,R)$, $\operatorname{Re} z_1<1-\nu$, where $\nu>0$. Therefore, when $\lambda\to 1$, $T_\lambda(V)\to q$ uniformly on V. So, for given $\varepsilon>0$ we can find λ_0 , $T=T_{\lambda_0}$ such that (1.2) is satisfied. (1.1) and (1.3) can now be satisfied by choosing a small enough r>0. It is possible because T(p)=p and T is continuous at p.

- 2. LEMMA 2. For any domain U which is a finite union of open balls, $U = \bigcup_{s=1}^{N} B(z^{s}, r_{s})$, and any compact $K \subset U$, there exist an $\varepsilon > 0$ and $F: U \to \mathbb{C}^{n}$, F is holomorphic, such that
 - (2.1) $F(U) \cap B$ is connected,
 - (2.2) $W(\varepsilon) \supset F(K)$, where $W(\varepsilon) = B \setminus (B(p, \varepsilon) \cup B(q, \varepsilon))$,
 - (2.3) $F(U) \supset B(p, \varepsilon) \cup B(q, \varepsilon)$,
 - (2.4) F^{-1} is one-to-one on $F(U) \cap B$.

PROOF. (1) First we take a ball of a minimal radius that contains U. Without any loss of generality we can assume that this ball is the unit ball B. One can prove now that $\partial B \cap \partial U$ contains at least two different points ζ , η .

- (2) Now we find a $T \in Aut(B)$ such that $T\zeta = p$, $T\eta = q$. T is analytic in a neighborhood B_0 of \overline{B} .
- (3) We find now such a small $\delta > 0$ that if we introduce $\phi_{\delta} : \mathbb{C}^n \to \mathbb{C}^n$; $\phi_{\delta} : z \mapsto (1 + \delta)z$, then $\phi_{\delta}(U)$ has the following properties:
 - (a) $\phi_{\delta}(U) \subset B_0$,
 - (b) $\phi_{\delta}(U) \cap B$ is connected,
 - (c) $\phi_{\delta}(U) \cap B \supset \phi_{\delta}(K)$.
 - (4) We take now $F = T \circ \phi_{\delta}$.
- (2.1) and (2.4) follow from the construction of F. The existence of an $\varepsilon > 0$ such that (2.2) and (2.3) are satisfied follows from the facts that $\phi_{\delta}(U) \ni \zeta$, η , and therefore $F(U) \ni p$, q, that $F(K) \subset B$, and that F(U) is open.
 - 3. Let as before a domain $U = \bigcup_{i=1}^{N} B(z^{i}, r_{i})$.

We take

$$K_s = \bigcup_{i=1}^N \overline{B(z^i, r_i - 1/s)}.$$

- $\{K_s\}$ is a sequence of compacts in U such that
 - (a) $K_s \subset K_{s+1}$ for every $s \ge 1$.
 - (b) $\bigcup_{s=1}^{\infty} K_s = U$.

(c) If K is any compact in U, then there exists an s such that $K \subset K_s$. Let 1 > R > r > 0. Denote, for $\zeta \in \partial B$,

$$D(R,r,\zeta) = \left[B(\zeta,r) \setminus \overline{B(\zeta,r)}\right] \cap B.$$

0 < R < 1 and a point $\zeta \in \partial B$ are now given. $U = \bigcup_{s=1}^{\infty} K_s$ is from above.

LEMMA 3. There exist sequences $\{R_s\}$ and $\{r_s\}$ and closed sets V_s , $1 \le s < \infty$, such that, for all $s \ge 1$,

- $(3.1) R_1 = R,$
- $(3.2) R_s > r_s > R_{s+1} > 0,$
- (3.3) $V_s \subset D_s$, where $D_s = D(R_s, r_s, \zeta)$.
- (3.4) There exists a biholomorphic imbedding ϕ_s : $(B \setminus V_s) \to U$ such that

$$\phi_{\mathfrak{c}}(D_{\mathfrak{c}}\setminus V_{\mathfrak{c}})\supset K_{\mathfrak{c}}.$$

(3.5) $B \setminus V_s$ is connected.

PROOF. Using a unitary transformation (if needed), we may assume $\zeta = p$. We will construct R_s by induction. For every R_s we construct r_s , V_s , ϕ_s and then R_{s+1} .

For s=1 we take $R_1=R$. Suppose R_s has been constructed. Using Lemma 2 we can find $F=F_s$: $U\to \mathbb{C}^n$ such that (2.1)-(2.4) hold for some $\varepsilon=\varepsilon_s>0$ and $K=K_s$. Applying Lemma 1 now for ε_s and R_s we find $r=r_s>0$ and $T=T_s\in \operatorname{Aut}(B)$ such that (1.1)-(1.3) hold. From (1.2), (1.3) and (2.2) we find

$$T_s(D_s)\supset W(\varepsilon_s)\supset F_s(K_s).$$

We choose now $V_s = T_s^{-1}(\overline{W(\varepsilon_s)} \setminus F_s(U))$, $\phi_s = F_s^{-1} \circ T_s$ and R_{s+1} is any positive number less than r_s .

Properties (3.1)–(3.5) can be checked now by using (2.1)–(2.4).

- 4. Consider the set S of all such domains U each of which is a finite union of open balls in \mathbb{C}^n with centers at rational points and rational radii. Evidently, S is countable. $S = \{U_1, U_2, \dots, U_m, \dots\}$
- 5. We set, for $m \ge 1$, $\zeta_m = (\exp(\pi i/m), 0, \dots, 0) \in \partial B$. Choose now numbers $R(\zeta_m)$, $m \ge 1$, such that $R(\zeta_m) > 0$ and $B(\zeta_m, R(\zeta_m)) \cap B(\zeta_s, R(\zeta_s)) = \emptyset$ if $m \ne s$. One can take, say, $R(\zeta_m) = |\zeta_{m+1} \zeta_m|/2$. For each m we use now the paragraph 3 to represent $U_m = \bigcup_{s=1}^{\infty} K_{ms}$ and then Lemma 3 (where $\zeta = \zeta_m$, $R = R(\zeta_m)$) to find V_{ms} and ϕ_{ms} . Let

$$D=B\setminus\bigcup_{m,s=1}^{\infty}V_{ms}.$$

Connectedness of D follows from the construction of all V_{ms} (each V_{ms} lies in a different open set) and (3.5). The universal property of D follows from the following. Given a domain $G \subset \mathbb{C}^n$ and a compact $K \subset G$ we can always find m, s such that $U_m \in S$, $G \supset U_m \supset K_{ms} \supset K$. From the construction and (3.4) one can conclude now that $\phi_{ms} \colon D \to U_m$ is a biholomorphic imbedding and $\phi_{ms}(D) \supset K_{ms}$. So, $G \supset \phi_{ms}(D) \supset K$.

- III. 1'. Proof of Theorem 1 follows from the construction of D and was presented above.
- 2. PROOF OF THE COROLLARY 1. One can always represent a domain G as $G = \bigcup_{s=1}^{\infty} G_s$ such that, for all $s \ge 1$,
 - (a) G_s is a subdomain in G,
 - (b) \overline{G}_s is a compact set in G,
 - (c) $G_{s+1} \supset \overline{G}_s$.

Now using Theorem 1 take F_s : $D \to G_{s+1}$ such that F_s is a biholomorphic imbedding and $F_s(D) \supset \overline{G}_s$. Eviently, $F_{s+1}(D) \supset F_s(D)$ and $G = \bigcup_{s=1}^{\infty} F_s(D)$.

3. PROOF OF THEOREM 2. V_s was constructed in Lemma 3. One can see that we can require in addition to (3.1)–(3.5) the following: V_s has no isolated points. Actually if we take V_s constructed before and add sufficiently small neighborhoods of its isolated points the closure of the new set will still satisfy (3.3)–(3.5). Now, using this we see that a domain $D_1 = D$ can be constructed in such a way that its boundary does not have any isolated points, but D_1 still satisfies Theorem 1. Let $a \in D_1$, choose $D_2 = D_1 \setminus \{a\}$. D_2 will also be a universal exhausting domain.

Since D_1 and D_2 both are universal exhausting domains they are mutually exhaustable.

Now we need to prove that D_2 is not holomorphically equivalent to D_1 . If it is, then let $F: D_2 \to D_1$ be a biholomorphism. F has a removable singularity at $a \in \partial D_2$. So, F can be uniquely extended to $\{a\}$ as a holomorphic map. Let $F(a) = b \in \overline{D_1}$. $b \in D_1$ since F is an open map and ∂D_1 has no isolated singularities. Let $c \in D_2$ be such a point that F(c) = b. Now if $W_c \cap W_a = \emptyset$ are neighborhoods of c and a, respectively, $F(W_c) \cap F(W_a)$ is not empty and open. This contradicts the suggestion that F is one-to-one on D_2 .

REFERENCES

- 1. H. Alexander, Extremal holomorphic imbeddings between ball and polydisc, Proc. Amer. Math. Soc. 68 (1978), 200-202.
 - 2. J.-E. Fornaess and E. L. Stout, Polydiscs in complex manifolds, Math. Ann. 227 (1977), 145-153.
- 3. J.-E. Fornaess and Sibony Nessim, *Increasing sequences of complex manifolds*, Math. Ann. 255 (1981), 351-360.
- 4. B. L. Fridman, Biholomorphic invariants of a hyperbolic manifold and some applications, Trans. Amer. Math. Soc. 276 (1983), 685-698.
- 5. L. Lempert, A note on mapping polydiscs into balls and vice versa, Acta Math. Hungar. 34 (1979), 117-119.
 - 6. W. Rudin, Function theory in the unit ball of Cⁿ, Springer-Verlag, New York, 1980.

DEPARTMENT OF MATHEMATICS, WICHITA STATE UNIVERSITY, WICHITA, KANSAS 67208