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OSCILLATION THEOREMS FOR SECOND ORDER LINEAR
DIFFERENTIAL EQUATIONS WITH DAMPING

JURANG YAN

ABSTRACT. In this paper, we present some criteria for the oscillation of the

differential equation with damping

(-y(t)x'(t))' + p(t)x'(t) + q(t)x(t) =0, te [to, oo),

where p(t) and q(i) are allowed to change sign on [io, oo), and -y(t) > 0. One

of our results is new even for the differential equations

x"(t) + q(t)x(t) = 0,

and

x"(t) +p(t)x'(t) + q(t)x(t) = 0.

In this paper, we study the oscillatory behavior of the solution of the second

order differential equation with damping

(1) (l(t)x'(t))' + p(t)x'(t) + q(t)x(t) = 0,

where 7, p and q are continuous on [io, cc), to > 0, 7 > 0, and p and q are allowed to

take on negative values for arbitrarily large t. The oscillatory character is considered

in the usual sense, i.e., a solution of equation (1) is said to be oscillatory if it has

arbitrarily large zeros; otherwise it is said to be nonoscillatory. Equation (1) is

called oscillatory if all its solutions are oscillatory.

In the absence of damping, there is a very large body of literature devoted to

the corresponding equations

(*) x"(t)+q(t)x(t)=0,

(**) (1(t)x'(t))' + q(t)x(t)=0.

Although (1) can be put in the forms (*) and (**) by multiplication by an inte-

grating factor and, if necessary, by simple transformations, there are advantages

in obtaining direct oscillation theorems for (1): besides the obvious practical ad-

vantage of eliminating the need for the integrating factor, there is an incentive in

developing methods which will generalize to more general equations.

The use of averaging functions in the study of oscillation dates back to works of

Wintner [8] and Hartman [2]. Coles [1] and Willett [7], and more recently, Kwong

and Zettl [4] developed averaging techniques and, respectively, established more

general theorems for equations (*) and (**) by considering weighted averages of

the integral of q.

Recently, by exploiting more fully a simple "completing square" and averaging

technique of Kamenev [3], the author [9] has given the following oscillation theorem

for equation (1) with "/(i) = 1.
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THEOREM.   // there exist a € (1, oo) and ß € [0,1) such that

(2) lim supí-" f (t- T)aT0q(r) dr m oo,

(3) lim sup t~a [ [(t - t)P(t)t + CXT- (3(t - r)]2(t - r)0" V~2 dr < oo,
t^°° Jto

then (1) is oscillatory.

Of particular interest, therefore, is the problem of finding criteria for the oscil-

lation of (1) when (2) or (3) is not satisfied. In this paper we will establish two

oscillation theorems. The first theorem considerably improves some known results

and the second is new even for equations (*) and (**). Our results are as follows:

THEOREM 1. Suppose that there exist a positive continuously differentiable

function h(t) on [to, oo) and a constant a € (0, oo) such that

(4) limaupt-a f ¡(t-T)ah(T)q(t)
*-*°° Jto I

,2

(i-r)î^l + a»M-(«-r)V(r)]'

x («-,)<.->*)}* = „,,

then equation (1) is oscillatory.

PROOF. Let i(i) be a nonoscillatory solution of (1). Without loss of generality,

we suppose that x(t) ^ 0 for t > to- Furthermore, we put

u(t) = 7(í)i'(í)/x(í).

Then it follows from (1) that

(5) u'(t) + w2(í)/7(í) + p(íV(í)/7(í) + q(t) = 0,        t > t0,

and consequently, for all t > s > to,

f\t - r)ah(r)J(r) dt + j\t - r)aft(T)fj(T) dr

+ j\t - r)^y) dr + j\t - rrh(r)ç(r) dr = 0.

Since

rt

Í (t - T)ah(r)u'(T) dr = a f (t- t)',-1/i(t)w(t) dr

- f {*- T)a/i'(r)w(r) dr - u(s)(t - s)ah(s),



278 JURANG YAN

we obtain that

(t - T)ah(r)q(T) dr
t

= (t- s)ah(s)u(s) - j

,h(r)p(r)

(t-T)"h(T)u2(T)

~l(r)
dr

-I
J s

and hence

£{(t-T)°h(T)q(T)

[(t-T)-
7(r)

+ ah(r) -(t- T)h'(r))(t - r)0"1^) dr,

(t-r)
h(r)p(r)

-y(r)

l2

+ ah(r) - (t - r)h'(r) (t _rr-22W|
'       h(r)j

dr

= (t- s)°h(s)U(s) -Hit- r)a/2 (^j)      wir)

+

< (t - s)ah(s)uj(s), s > t0.

(t-r)^^>+ah(r)-(t-r)h'(r)

*«-*"-"" fflùl *
Divide (7) by ta and take the upper limit as t —> oo. Using (4), we obtain a

contradiction. This completes the proof of the theorem.

REMARK 1. Note that Theorem 1 does not even require /t°° dr/^r) = oo as

does the Wintner-Leighton theorem [8, 6], and does not require that the damping

coefficient p(t) is a "small" function.

REMARK 2. Theorem 1 above includes a result in [9] and Theorem 2 in [10] on

equation (1) with f(t) = 1.

The following corollary improves and generalizes Corollary 6 and Corollary 7 in

[5].

COROLLARY  1.   //

(8) lim sup ra /  | (t-T)2h(T)q(r)

(t-r)2h'2(rh(T)

4h(r)
(t - r)h(rW(r) dr = oo,

with h(t) as in Theorem 1, then equation (**) is oscillatory.

PROOF. From (7), letting p(t) s 0 and a = 2, we have that

(9)

t'2 J* [(t - r)2h(r)q(r) - h(rh(r) - ËZlJglp^ + (t _ T)h'(rh(r)

< t~2(t - t0)2h(to)u(to).

dr
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Since

(10)

t—»oo

_  1~4

ht- r)/i'(rb(r) dr = Í   f h'(0l(0 <% dr
¿to •'to •'to

=   / h(rh(T) dr- f (t- r)h(rh'(T) dr - h(t0h(t0)(t - i0),
Jt0 Jt0

(9) and (10) together contradict our hypothesis (8).

THEOREM 2. Suppose that there exist a positive continuously differentiate

function h(t) on [in,00) and a € (1,oo) such that

(11) lim supí_Q i (t- T)ah(T)q(r) dr < oo,
*-"» Jto

and there exists a continuous function <p(t) on [to,oo) such that

(12)

Jim inf t~a í i(t- T)ah(T)q(r)

\t-r)^^+ah(r)-(t-r)h'(r)]2

x(t-T)a2}$j}dT><p(s),

and

(13) lim  f-^ï-dr = oo,
t^00 Jt0 h(r)t(T)

where <p+(t) = max(v5(f),0), then equation (1) is oscillatory.

PROOF. Suppose that x(t) is a solution of (1) with x(t) ^ 0 for r > to- Set

w(i) = i(t)x'(t)/x(t). As in the proof of Theorem 1, (7) holds. Dividing (7) by ta
and taking the lower limit as t —► oo, we obtain (p(s) < h(s)uj(s), s > to, which

implies that

(14) <p%(a) < ft2(S)W2(3).

We define functions

u(t) = t~a f \(t - r)fe(r).P¡r) + ah(r) - (t - r)A'(r)l (t - r)*"1^) dr,
Jt0 L i(T)

v(t)=t~a f (t-r)ah(T)^44dr,        t>t0.
Jto 1\T)

From (6),

(15) u(t) + v(t) = t~a(t - to)ah(toMt0) - t~a f (t- T)ah(r)q(T) dr,
Jto

and we observe that (12) implies that

(16) lim inf t~a f (t- T)ah(T)q(r) dr > f>(s),        s > t0,
t—oo Jê

t>t0,
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and

(17) lim supt-a f (t-T)ah(T)q(r)dT
*-,°° Jto

— lim inf
t—»oo ?/;[«

r)Mil4i)+aMT)_(i_r)/l(r)12
7(r)

x (í"r)Q_2r$)dr-^(Í0)-

(í„-rr-2J^dr<oo.

(17) together with (11) shows that there exists a sequence

(18) {tn}f,    tn>to,    n= 1,2,3,...,      limin = oo,
n—►oo

such that

(i9)   I.Ç fk-,)4^ö
n_,0°   4   /to   L T(r)

+ a/i(r) - (in - r)V(r)

Taking the upper limit as í —► oo in (15) and using (16), we have

lim sup{u(f.) + v(t)\ = h(t0)(jj(t0) - lim init~a / (t - r)h(r)q(r) dr
(20) t—oo t—oo Jto

= h(tQ)u)(t0) - <p(t0) = k.

Hence for all sufficiently large n,

(21) tl(tn) + «(ín) < fc-

Since

„<)-£(1-I)-M^*>P

is increasing in í > in, we see that limt_oo v(t) = c, where c = oo or is a positive

constant. Suppose that c = oo, then limn-^» v(tn) = oo and, by (21),

(22) lim u(tn) = -oo.
n—»oo

(21) and (22) lead to u(tn)/v(tn) + 1 < e, where 0 < e < 1 is a constant, that is,

(23) u(tn)/v(tn) < e - 1< 0,    for all large tn.

One the other hand, by the Schwarz inequality we have

0 < t~2a (£" [(in - r)^p + ah(r) - (tn - r)h'(;

- T"" Ç [itn " T)^í(fF + ah{T) " (ín " r)/l'(r)]2 (tn "

■(W>-.r*>f#*).

cj(t) dr

T)"-2MdT
h(r)
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for all large tn, and so

v(tn)

- ir C [{tn " r)^F+ah{T) -{tn - T)h'{r)]2 {tn - r)a~2 i$jdT-

By (19), we have

u2(tn)
0<  lim -j--

n->oo   V(tn)

<  lim t-° h \(tn - r)MlMll + ah{r) _ {tn _ r)ft'(T) {tn ~T)   W)

< 00.

which contradicts (22) and (23).

Hence limt-K» v(t) = c < oo. Using (14), we then obtain that

limí-Q Í (t-T)a^+}T).dr

< lim t~Q [ (t - T)ah(T)^4^- dr = c < oo,

which contradicts condition (13). This completes the proof of Theorem 2.

REMARK 3. In the conditions of Theorem 2, q(t) is not required to be integrable

or bounded on [in, °°)- See Examples 2 and 3 below.

EXAMPLE 1. Consider the equation

(24) (~x'(t)j  -r-siníi'(í)-r-t2cosíi(í) =0, t > t0 > 0.

If we take h(t) = t and a = 2, then all the hypotheses of Theorem 1 are satisfied.

Hence (24) is oscillatory, while oscillation criteria in [3, 9 and 10] fail to apply to

equation (24).

EXAMPLE 2. Consider the equation

(25) (txx'(t))' + f sin tx'(t) + t" cos tx(t) = 0,        t > t0 > 0,

where —1 < A < 1, —oo < p < —1 and — 1 < v < 1 are constants and 2v + 1 > X.

Taking h(t) = 1 and a = 2, we have

lim sup i
t—»oo

/  (t — t)2tv cos rdr = —Íq sin to < oo,
Jto

tlim inf t~2 Í j (t - r)V cos rdr-h(t- r)^ sin r + 2] V j dr

>—8usms-k,        s>to,
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where fc is a positive constant. Set <p(s) = -sv sin s — fc, there is an integer N

such that (2JV + l)ir + 7r/4 > t0, and when n > N and (2n + l)7r + 7r/4 < s <

2(n + l)ir — 7r/4, <p(s) — -a" sin 3 — fc > esv, where e is a small constant. Noting

2v — X > —1, we have

/"' ID2 (a\ «21 /•2(n+l)7r-x/4

lim   /   ^da> Y e2 \ s2»->d3
t-*°°Ao       S ^n       J(2n+l)rr+*/4

oo ,2(n+l>-*/4   .

> vy /
oo

o I' ' ' as
— = oo.

* (2n+l)7T+7r/4

Hence (25) is oscillatory by Theorem 2, whereas known of the none criteria can

cover this result.
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