SOME EXAMPLES OF INDEFINITE COMPLETE COMPLEX EINSTEIN HYPERSURFACES NOT LOCALLY SYMMETRIC

ALFONSO ROMERO

Abstract. Some examples of indefinite complete complex Einstein hypersurfaces of an indefinite complex flat space which are not locally symmetric are given.

Introduction. Recently [3], a systematic study of complex Einstein hypersurfaces in indefinite complex space forms (see [1]) has been made as an extension of the known work of Smyth [5] to indefinite Kaehler metrics. In that paper, the authors found that, except in one case, indefinite complex Einstein hypersurfaces are locally symmetric.

The purpose of this paper is to give some examples of indefinite complex Einstein hypersurfaces of the indefinite complex flat space \mathbb{C}^{2n+1}, $n > 1$ (see [1]), which are not locally symmetric. In fact, let M_p, $p \in \mathbb{Z}$, $p \geq 2$, be the complex hypersurface of \mathbb{C}^{2n+1} given by

$$\sum_{j=1}^{n} (z_j - z_{n+j})^p = p^2z_{2n+1}.$$

Thus, we have a family of spaces M_p with several interesting features that we prove in the following.

Theorem. (a) Every M_p is a complete complex hypersurface of \mathbb{C}^{2n+1} with index $2n$, which is Ricci-flat but nonflat.
(b) M_p, with $p > 2$, is not locally symmetric and M_2 is.
(c) If $p \neq p'$ then M_p and $M_{p'}$ are not isometric, but each M_p is holomorphically diffeomorphic to \mathbb{C}^{2n}.
(d) If $p > 2$, then M_p is not homogeneous with respect to the induced Kaehler metric.

We shall use here the same notation as in [3].

1. Preliminaries. For each $z = (z_1, \ldots, z_{2n+1}) \in M_p$

$$\xi_z = \left((\bar{z}_1 - \bar{z}_{n+1})^{p-1}, \ldots, (\bar{z}_n - \bar{z}_{2n})^{p-1}, (\bar{z}_1 - \bar{z}_{n+1})^{p-1}, \ldots, (\bar{z}_n - \bar{z}_{2n})^{p-1}, 1\right)$$

Received by the editors November 30, 1984.

1980 Mathematics Subject Classification (1985 Revision). Primary 53C40, 53C50, 53C55.

Key words and phrases. Indefinite complex Einstein hypersurface, locally symmetric, indefinite complex space form.

©1986 American Mathematical Society

0002-9939/86 $1.00 +$.25 per page

283
is a normal vector to M_p in z and satisfies $g(\xi_z, \xi_z) = 1$, where g is the usual Kaehler flat metric of index $2n$ on \mathbb{C}_n^{2n+1} (see [1]). Thus, ξ is a unit normal vector field to M_p.

It is easy to see that the Weingarten endomorphism A associated to ξ is given, in each $z \in M_p$, by

\begin{equation}
A(a_1, \ldots, a_n, a_{n+1}, \ldots, a_{2n}, a_{2n+1})
= \left(f_1(z)(\bar{a}_1 - \bar{a}_{n+1}), \ldots, f_n(z)(\bar{a}_n - \bar{a}_{2n}),
\right.
\left. f_1(z)(\bar{a}_1 - \bar{a}_{n+1}), \ldots, f_n(z)(\bar{a}_n - \bar{a}_{2n}), 0 \right)
\end{equation}

where $f_j(z) = (1 - p)(\bar{z}_j - \bar{z}_{n+j})^{p-2}$, $j = 1, 2, \ldots, n$.

Let P_j be the tensor field of type $(1,1)$ defined by

\begin{equation}
P_j(a_1, \ldots, a_n, a_{n+1}, \ldots, a_{2n}, a_{2n+1})
\end{equation}

\begin{equation}
= (0, \ldots, 0, \bar{a}_j - \bar{a}_{n+j}, 0, \ldots, 0, \bar{a}_j - \bar{a}_{n+j}, 0, \ldots, 0)
\end{equation}

for $j = 1, 2, \ldots, n$, where (a_i) denotes any tangent vector to M_p in z. Then, we can write

\[A = \sum_{j=1}^{n} f_j(z) P_j. \]

Moreover, the following properties hold:

\begin{equation}
P_j \text{ is a selfadjoint operator of the tangent space to } M_p \text{ in } z.
\end{equation}

\begin{equation}
P_i \cdot P_j = 0, \quad \nabla P_j = 0 \quad \text{and} \quad J \cdot P_j = -P_j \cdot J
\end{equation}

where ∇ and J are, respectively, the metric connection and the complex structure of M_p.

By using the Gauss equation [3, (1.1)] for the curvature tensor R of M_p, we obtain

\begin{equation}
R = \sum_{i,j=1}^{n} f_{ij}(z) R^0_{ij} + \sum_{i,j=1}^{n} h_{ij}(z) JR^0_{ij}
\end{equation}

where $f_{ij}(z)$ and $h_{ij}(z)$ are, respectively, real and imaginary parts of $\bar{f}_i(z)f_j(z)$, $\bar{f}_i(z)$ is the complex conjugate of $f_i(z)$ and R^0_{ij} the tensor field given by

\begin{equation}
R^0_{ij}(X, Y)Z = g(P_j Z, P_i X - g(P_i X, Z) P_j Y
\end{equation}

\begin{equation}
+ g(JP_i Y, Z)JP_j X - g(JP_j X, Z)JP_i Y
\end{equation}

for all X, Y, Z tangent to M_p.

Taking into account that $\nabla P_j = 0$, it follows $\nabla R^0_{ij} = 0$ for all $i, j = 1, 2, \ldots, n$. So,

\begin{equation}
\nabla^k \xi R = \sum_{i,j=1}^{n} \nabla^{(k)}(V_{ij}) R^0_{ij} + \sum_{i,j=1}^{n} \nabla^{(k)}(V_{ij}) JR^0_{ij}
\end{equation}

for all V tangent to M_p, $k \in \mathbb{Z}$, $k \geq 1$, where $\nabla^k V = \nabla V \cdots \nabla V$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
2. Proof of the Theorem. From (1.1) we have $A^2 = 0$ but M_p is not totally geodesic, and hence, the formula for the Ricci tensor (1.4) in [3] implies that M_p is Ricci flat but nonflat. Now suppose that $\gamma = \gamma(t)$ is a geodesic in M_p. Then components of γ (as a curve in C^{2n+1}) satisfy $\gamma_j''(t) = \gamma_{n+j}'(t) = F_j(t)$, $j = 1, 2, \ldots, n$, $\gamma_{2n+1}'(t) = G(t)$, where $F_j(t)$, $G(t)$ are certain polynomial functions of complex coefficients with degree $(F_j(t)) = p - 3$ and degree $(G(t)) = p - 2$. Thus, components of $\gamma(t)$ are also polynomial and hence $\gamma(t)$ is defined for all $t \in \mathbb{R}$. This proves that M_p is complete for all p, and so we have (a).

For (b) note that functions f_{ij} and h_{ij} in (1.5) are polynomial of degree $2(p - 2)$ (in particular constants for $p = 2$). By using (1.7), we have $\nabla^2 R = 0$. So, $\nabla R = 0$ for $p = 2$, that is, M_2 is locally symmetric. Now, let us suppose $p > 2$ and take for fixed j, $X \in \text{Ker} P_i$, $i \neq j$, $X \notin \text{Ker} P_j$. Then, using (1.4), (1.7) becomes

$$g((\nabla_p^2 R)(X, JX), JX) = -2\left(V\left(2^{(p-2)} R \right)(f_{jj}) \right) g(P_j X, X)^2 + g(J P_j X, X)^2. $$

If $\nabla 2(p-2)R = 0$, from (2.1) we obtain $g(P_j X, X) = g(J P_j X, X) = 0$ because

$$V\left(2^{(p-2)} V(f_{jj}) \right) \neq 0. $$

But, from (1.2) this implies that $X \in \text{Ker} P_i$ and it contradicts our assumption.

From the above discussion, we have $\nabla^2 R = 0$ and $\nabla 2(p-2)R \neq 0$ for all p. Then M_p and M_p' cannot be isometric if $p \neq p'$. However, M_p is the graph of a holomorphic function of C^{2n} on C. And this concludes (c).

Finally, we will prove (d). In fact, let us take $z \in M_p$, $p > 2$, verifying $z_j = z_{n+j}$ for all $j = 1, 2, \ldots, n$ and $z_{2n+1} = 0$. From (1.5) we have $R = 0$ in this point z. M_p homogeneous implies $R = 0$ in every point, but it is not possible because M_p is not a flat space.

REMARKS. (1) We know that M_p has index $2n$ and real dimension $4n$. The change of the Kaehler metric g of the ambient space by its negative permits us to obtain that M_p can be also considered as a complex hypersurface of C^{2n+1} and so, we can give a similar result to our Theorem for the family M_p in C^{2n+1}.

(2) M_2 is identical to the space of Example 3.4 in [3] which has a Weingarten endomorphism with maximal rank in each point (see also [2, p. 346]).

(3) Given positive integers $s, m, s \leq m$, we have that $M_p \times C^m_s$ is a complex hypersurface of C^{2n+m+1} for all $p \in \mathbb{Z}$, $p > 2$. Thus, we can obtain a result analogous to our Theorem for this family of spaces.

(4) In the definite case, Smyth proves in [6] that a complex hypersurface of a complex space form is homogeneous if and only if it is an Einstein space. This is not true here because our Theorem provides us many indefinite complete complex Einstein hypersurfaces that are not homogeneous.

(5) Since every M_p satisfies $A^2 = 0$, it is easy to see that the curvature tensor R of M_p verifies Nomizu's condition $R \cdot R = 0$ in [4]. However, we know by (b) that if $p > 2$, M_p is not locally symmetric. So, $R \cdot R = 0$ does not imply $\nabla R = 0$ for complete complex hypersurfaces of an indefinite complex flat space.
REFERENCES

DEPARTAMENTO DE GEOMETRÍA Y TOPOLOGÍA, FACULTAD DE CIENCIAS, UNIVERSIDAD DE GRANADA, 18071-GRANADA, SPAIN