On square roots of the uniform distribution on compact groups
HTML articles powered by AMS MathViewer
- by Persi Diaconis and Mehrdad Shahshahani
- Proc. Amer. Math. Soc. 98 (1986), 341-348
- DOI: https://doi.org/10.1090/S0002-9939-1986-0854044-9
- PDF | Request permission
Abstract:
Let $G$ be a compact separable topological group. When does there exist a probability $P$ such that $P * P = U$, where $U$ is Haar measure and $P \ne U$? We show that such square roots exist if and only if $G$ is not abelian, nor the product of the quaternions and a product of two element groups. In the course of proving this we classify compact groups with the property that every closed subgroup is normal.References
- H. Behncke, Nilpotent elements in group algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 197–198 (English, with Russian summary). MR 283582
- Persi Diaconis, Group representations in probability and statistics, Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 11, Institute of Mathematical Statistics, Hayward, CA, 1988. MR 964069
- Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, N.J., 1952. MR 0050886
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215 Hewitt and K. Ross, (1963), Abstract harmonic analysis. I, Springer-Verlag, Berlin, 1963. —, (1970), Abstract harmonic analysis. II, Springer-Verlag, Berlin, 1970.
- Irving Kaplansky, Infinite abelian groups, University of Michigan Press, Ann Arbor, 1954. MR 0065561
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- Jean-Louis Pascaud, Anneaux de groupes réduits, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A719–A722 (French). MR 335570
- Stephen S. Shatz, Profinite groups, arithmetic, and geometry, Annals of Mathematics Studies, No. 67, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0347778
- Sudarshan K. Sehgal, Nilpotent elements in group rings, Manuscripta Math. 15 (1975), 65–80. MR 364417, DOI 10.1007/BF01168879
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 341-348
- MSC: Primary 22C05; Secondary 43A05
- DOI: https://doi.org/10.1090/S0002-9939-1986-0854044-9
- MathSciNet review: 854044