A WEAKLY INFINITE-DIMENSIONAL SPACE WHOSE PRODUCT WITH THE IRRATIONALS IS STRONGLY INFINITE-DIMENSIONAL

ELZBIETA POL

Abstract. We give an example of a weakly infinite-dimensional space X such that the product $X \times B$ of X and a subspace B of the irrationals is strongly infinite-dimensional; under the assumption of the Continuum Hypothesis, B can be the irrationals. This example answers a question of Addis and Gresham [AG].

1. Terminology and notation. All spaces under discussion are metrizable and separable. Our terminology follows [AP and E]. We denote by I the real interval $[0,1]$, by C the usual Cantor set in I and by I^ω the Hilbert cube. We denote the space of the irrational numbers from I by P and the rational numbers from I by Q.

A space X is weakly infinite-dimensional [AP, Chapter 10, §§4–7] if for every sequence $\{(A_1, B_1), (A_2, B_2), \ldots \}$ of pairs of closed disjoint subsets of X there are partitions L_i of X between A_i and B_i such that $\cap_{i=1}^\infty L_i = \emptyset$. Otherwise, X is strongly infinite-dimensional.

A space X is called a C-space if for every sequence $\mathcal{G}_1, \mathcal{G}_2, \ldots$ of open covers of X there exists a sequence $\mathcal{U}_1, \mathcal{U}_2, \ldots$ of families of open subsets of X such that, for $i = 1, 2, \ldots$,

(i) the members of \mathcal{U}_i are pairwise disjoint,
(ii) each member of \mathcal{U}_i is contained in a member of \mathcal{G}_i,
(iii) the union $\cup_{i=1}^\infty \mathcal{U}_i$ covers X.

The notion of C-space was introduced by W. Haver in [H] for metric space and by D. Addis and J. Gresham in [AG] for general topological spaces.

Lemma 1 [AG]. Every C-space is weakly infinite-dimensional.

2. Results. The aim of this note is to construct the following examples.

Example 1. There exists a weakly infinite-dimensional space X such that the product $X \times B$ of X with a certain subspace B of the space of irrationals is strongly infinite-dimensional. Moreover, X is a C-space while $X \times B$ is not a C-space.

Example 2. Under the assumption of the Continuum Hypothesis there exists a weakly infinite-dimensional space X such that the product $X \times P$ of X with the space of irrationals P is strongly infinite-dimensional. Moreover, X is a C-space while $X \times P$ is not a C-space.
Example 2 gives, in particular, an answer to a question formulated by Addis and Gresham in [AG] as to whether the product of a C-space and the space of irrationals is a C-space.

The first example of two metrizable separable weakly infinite-dimensional spaces X_1 and X_2 (being also C-spaces) whose product $X_1 \times X_2$ is strongly infinite-dimensional was given by R. Pol in [P2] (see [EP, Example 8.20] for the proof that X_i are C-spaces).

3. Constructions. Our constructions are based on the following lemma, which follows an idea of Michael [M].

Lemma 2. Let $f: X \to Y$ be a mapping of a space X into a space Y and let $A = f^{-1}(B)$ for some $B \subset Y$. If the subset $\text{Graph}(f|A) = \{(x,f(x)): x \in A\}$ of $X \times Y$ is strongly infinite-dimensional, then the product $X \times B$ is strongly infinite-dimensional (and thus is not a C-space).

The proof of this lemma follows from the fact that a closed subspace of a weakly infinite-dimensional space is weakly infinite-dimensional and that $X \times B$ contains $\text{Graph}(f|A)$ as a closed subset.

Construction of Example 1. Let T be the weakly infinite-dimensional compactum, which is not countable dimensional defined by R. Pol in [P1]. The space T has the following structure: $T = Y \cup Z$, where Y is a completely metrizable totally disconnected space, which is strongly infinite-dimensional, and Z is the union of countably many 0-dimensional sets Z_1, Z_2, \ldots. Moreover, we can assume (see [P1, Comment B]) that T is embedded in the product $C \times I^\omega$ of the Cantor set C and the Hilbert cube I^ω, in such a way that Y is the graph of a certain first-Baire-class function $f: C \to I^\omega$, i.e., $Y = \{(t, f(t)): t \in C\} \subset C \times I^\omega$.

Split the Cantor set C into two disjoint Bernstein sets C_1 and C_2 (see [K, §40]), i.e., all compact subsets of C_i are countable. Since Y is strongly infinite-dimensional, either $Y_1 = \{(t, f(t)): t \in B_1\}$ or $Y_2 = \{(t, f(t)): t \in B_2\}$ is strongly infinite-dimensional. Suppose that Y_2 is strongly infinite-dimensional and let X be the following subspace of $C \times C \times I^\omega$: $X = (B_1 \times T) \cup \{(t, t, f(t)): t \in B_2\} \subset C \times T$. Denote $X_1 = (B_1 \times T)$, $X_2 = \{(t, t, f(t)): t \in B_2\}$. The set X_2 is obviously homeomorphic to Y_2, hence it is strongly infinite dimensional. We will show that

\[(1) \quad X \text{ is a C-space.}\]

Suppose that $\mathcal{G}_1, \mathcal{G}_2, \ldots$ is a sequence of open covers of X. Fix an $i \geq 3$. Since the set $B_1 \times Z_{i-2}$ is 0-dimensional, there exists a family \mathcal{W}_i of pairwise disjoint sets open in $C \times T$ such that $B_1 \times Z_{i-2} \subset \bigcup \mathcal{W}_i = W_i$ and for each $W \in \mathcal{W}_i$ the set $W \cap X$ is contained in some member of \mathcal{G}_i. Let $F = (B_1 \times T) \setminus \bigcup_{i=3}^{\infty} W_i$; we will show that $\dim F = 0$. Since $\bigcup_{i=3}^{\infty} W_i \supset B_1 \times Z$, F is a closed subset of $C \times T$ contained in $B_1 \times Y$. Consider the projection $p_1: B_1 \times T \to B_1$. Since T is compact, p_1, as well as $p = p_1/F: F \to B_1$, is a closed mapping. Moreover, for each $t \in B_1$ the set $p^{-1}(t) = (\{t\} \times T) \cap F$ is a compact set contained in $\{t\} \times Y$. It follows that $\dim p^{-1}(t) = 0$, because Y is totally disconnected. Thus, by the Hure-
wicz Theorem (see [E, Theorem 1.12.4])
\[
\dim F \leq \sup \{ \dim p^{-1}(t) : t \in B_1 \} + \dim B_1 = 0.
\]

Now, let \(\mathcal{V}_2 \) be a family of pairwise disjoint open subsets of \(C \times T \) such that \(F \subset \bigcup_{\mathcal{V}_2} W_2 \) and for each \(W \in \mathcal{V}_2 \) there exists \(U \in \mathcal{G}_2 \) such that \(W \cap X \subset U \).

Put \(K = X \setminus \bigcup_{i=2}^{\infty} W_i \), since \(\bigcup_{i=2}^{\infty} W_i \supset B_1 \times T \), then \(K \subset X_2 \). We shall show that the set \(K \) is countable. Let \(p_2 : C \times T \to C \) be the projection. Since \(p_2 \) is a closed mapping, the set \(L = p_2((C \times T) \setminus \bigcup_{i=2}^{\infty} W_i) \) is closed in \(C \). Moreover, the set \(L \) is contained in \(B_2 \), hence it is countable. It follows that the set \(p_2(K) \subset L \) is countable, which implies that \(K \) is countable, because \(p_2|_{X_2} : X_2 \to B_2 \) is a one-to-one mapping.

Let \(\mathcal{U}_1 \) be a family of pairwise disjoint open subsets of \(X \) such that \(K \subset \bigcup_{\mathcal{U}_1} \) and each member of \(\mathcal{U}_1 \) is contained in some member of \(\mathcal{G}_1 \). Then the family \(\mathcal{U}_1, \mathcal{U}_2, \ldots \), where \(\mathcal{U}_i = \{ W \cap X : W \in \mathcal{U}_i \} \) for \(i \geq 2 \), satisfies conditions (i), (ii) and (iii).

Finally, let \(f : X \to C \) be the projection. Then \(f^{-1}(B_2) = X_2 \) and the Graph(\(f \mid X_2 \)) is homeomorphic to \(X_2 \) in a natural way, hence it is strongly infinite-dimensional. It follows by Lemma 2 that the product \(X \times B_2 \) is strongly infinite-dimensional. Since \(B_2 \) is a 0-dimensional metrizable separable space, it is homeomorphic to a subset \(B \) of the irrationals \(P \).

Construction of Example 2. In this example we use, among others, some ideas of [P2].

Let \(Z = \prod_{i=0}^{\infty} I_i \), where \(I_i = I \) for \(i = 0, 1, 2, \ldots \), be the Hilbert cube and the mappings \(p_0 : Z \to I_0 \) and \(p_n : \prod_{i=1}^{n} I_i \to \prod_{i=1}^{n} I_i \) be appropriate projections. Arrange all rational numbers in \(I_0 \) into a sequence \(q_1, q_2, \ldots \). Denote by \(T \) a compactum obtained from \(Z \) by attaching to each compactum \(\{ q_n \} \times \prod_{i=n+1}^{\infty} I_i \) the \(n \)-cube \(\prod_{i=n+1}^{\infty} I_i \), by the map \(p_n \), i.e., \(T \) is a quotient space defined by an upper semicontinous decomposition consisting of singletons \(\{ (t, x) \} \), where \(t \in P \) and \(x \in I_0 \), and the sets \(\{ q_n \} \times p_n^{-1}(y) \), where \(y \in \prod_{i=n+1}^{\infty} I_i \). Let \(\pi : Z \to T \) be the natural quotient mapping and \(X_1 = \pi(Q \times \prod_{i=1}^{\infty} I_i) \).

Using the Continuum Hypothesis, define a transfinite sequence \(G_1 \supset G_2 \supset \cdots \supset G_\omega \supset \cdots, \alpha < \omega_1 \), of \(G_\delta \)-subsets of \(T \) containing \(X_1 \) and such that for every \(G_\delta \)-set \(G \) in \(T \) containing \(X_1 \) there exists \(\alpha \) with \(G_\alpha \subset G \) (\(\omega_1 \) denotes the first uncountable ordinal). Again by CH, we can arrange all continua in \(Z \) intersecting \(\{ 0 \} \times \prod_{i=1}^{\infty} I_i \) and \(\{ 1 \} \times \prod_{i=1}^{\infty} I_i \) into a sequence \(K_1, K_2, \ldots, K_\alpha, \ldots, \alpha < \omega_1 \).

By transfinite induction we will choose, for each \(\alpha < \omega_1 \), a point \(y_\alpha \in K_\alpha \cap \pi^{-1}(G_\alpha) \cap p_0^{-1}(P) \) such that \(y_\alpha \notin \{ y_\beta : \beta < \alpha \} \). Suppose that \(\alpha = 0 \) or that we have already defined all points \(y_\beta \) for \(\beta < \alpha \). Since \(\pi^{-1}(G_\alpha) \) is a \(G_\delta \)-set in \(Z \) containing \(Q \times \prod_{i=1}^{\infty} I_i \), \(M = p_0(Z \setminus \pi^{-1}(G_\alpha)) \) is a \(F_\sigma \)-set in \(I_0 \), contained in \(P \) (notice that the projection \(p_0 \) is closed). Thus the set \(P \setminus M \) is of second category in \(I_0 \). Hence there exists \(p_a \in (P \setminus M) \setminus \{ p_0(y_\beta) : \beta < \alpha \} \). Since \(\{ p_a \} \times \prod_{i=1}^{\infty} I_i \subset \pi^{-1}(G_\alpha) \) and the continuum \(K_\alpha \) intersects \(\{ p_a \} \times \prod_{i=1}^{\infty} I_i \), there exists \(y_\alpha \in K_\alpha \cap \pi^{-1}(G_\alpha) \cap p_0^{-1}(p_a) \). If we put \(x_\alpha = \pi(y_\alpha) \) for every \(\alpha < \omega_1 \), then

\[
x_\alpha \in G_\alpha \cap \pi(K_\alpha) \setminus \{ X_1 \cup \{ x_\beta : \beta < \alpha \} \}.
\]
Claim. The subspace $X = X_1 \cup \{ x_\alpha : \alpha < \omega_1 \}$ of T has the desired properties. We will show that

(2) X is a C-space,

and

(3) the subspace $X_2 = \{ x_\alpha : \alpha < \omega_1 \}$ of X is strongly infinite dimensional.

To show (2) suppose that (x_1, x_2, \ldots) is a sequence of open covers of X. Decompose the set X_1 into a sequence Z_1, Z_2, \ldots of 0-dimensional sets. For $i = 2, 3, \ldots$ choose a family \mathcal{W}_i of disjoint open subsets of T such that $Z_{i-1} \subset \mathcal{W}_i = \bigcup \mathcal{W}_i$ and for each $U \in \mathcal{W}_i$ there exists $G \in \mathcal{G}_i$ satisfying $U \cap X \subset G$ (see [E, Lemma 1.7.3]). Then $X_1 \subset \bigcup_{i=2}^{\infty} \mathcal{W}_i$ and there exists α such that $G_\alpha \subset \bigcup_{i=2}^{\infty} \mathcal{W}_i$. The set $X \setminus \bigcup_{i=2}^{\infty} \mathcal{W}_i \subset X \setminus G_\alpha$ is contained in $\{ x_\beta : \beta < \alpha \}$, hence it is countable. Thus there exists a family \mathcal{N}_1 of open subsets of X satisfying conditions (i) and (ii) for $i = 1$ and such that $U_1 = \bigcup \mathcal{N}_1 \subset X \setminus \bigcup_{i=2}^{\infty} \mathcal{W}_i$. The families $\mathcal{W}_1, \mathcal{W}_2, \ldots$, where $\mathcal{W}_i = \{ W \cap X : W \in \mathcal{W}_i \}$ for $i \geq 2$, satisfy conditions (i), (ii), and (iii).

To prove (3) we will show that the subspace $\pi^{-1}(X_2)$ of the Hilbert cube, which is homeomorphic to X_2, is strongly infinite dimensional. For $n = 1, 2, \ldots$, let $A_n = \{ (x_i) \in \prod_{i=0}^{\infty} I_i : x_n = 0 \}$ and $B_n = \{ (x_i) \in \prod_{i=0}^{\infty} I_i : x_n = 1 \}$ be opposite faces of the Hilbert cube Z and let U_i and V_i be open subsets of Z such that $A_i \subset U_i$, $B_i \subset V_i$, and $U_i \cap V_i = \emptyset$. For $i = 1, 2, \ldots$, let L_i be an arbitrary partition between $U_i \cap \pi^{-1}(X_2)$ and $V_i \cap \pi^{-1}(X_2)$ in $\pi^{-1}(X_2)$. The partition L_i can be extended (see [E, Lemma 1.2.9]) to a partition L'_i between A_i and B_i in Z satisfying $L'_i \cap \pi^{-1}(X_2) \subset L_i$. Since $\cap_{i=1}^{\infty} L'_i$ contains a continuum connecting $\{0\} \times \prod_{i=0}^{\infty} I_i$ and $\{1\} \times \prod_{i=0}^{\infty} I_i$ (see [RSW, Lemma 5.2]), say y_α, we have $y_\alpha \in \cap_{i=1}^{\infty} L'_i \cap \pi^{-1}(X_2)$. Therefore $\cap_{i=1}^{\infty} L_i \neq \emptyset$. This ends the proof of (3).

Finally, let $f : X \to I_0$ be the projection. Then $f^{-1}(P) = X_2$. Moreover, $\text{Graph}(f | X_2)$ is homeomorphic to X_2, hence it is strongly infinite-dimensional. Thus, by Lemma 2, the product $X \times P$ is strongly infinite-dimensional.

References

Department of Mathematics, University of Warsaw, Palac Kultury i Nauki, 00-901 Warszawa, Poland