A weakly infinite-dimensional space whose product with the irrationals is strongly infinite-dimensional
HTML articles powered by AMS MathViewer
- by Elżbieta Pol
- Proc. Amer. Math. Soc. 98 (1986), 349-352
- DOI: https://doi.org/10.1090/S0002-9939-1986-0854045-0
- PDF | Request permission
Abstract:
We give an example of a weakly infinite-dimensional space $X$ such that the product $X \times B$ of $X$ and a subspace $B$ of the irrationals is strongly infinite-dimensional; under the assumption of the Continuum Hypothesis, $B$ can be the irrationals. This example answers a question of Addis and Gresham [AG].References
- David F. Addis and John H. Gresham, A class of infinite-dimensional spaces. I. Dimension theory and Alexandroff’s problem, Fund. Math. 101 (1978), no. 3, 195–205. MR 521122, DOI 10.4064/fm-101-3-195-205 P. S. Alexandroff and B. A. Pasynkov, Introduction to dimension theory, Nauka, Moskva, 1973. (Russian)
- Ryszard Engelking, Teoria wymiaru, Biblioteka Matematyczna, Tom 51. [Mathematics Library, Vol. 51], Państwowe Wydawnictwo Naukowe, Warsaw, 1977 (Polish). MR 0482696
- Ryszard Engelking and Elżbieta Pol, Countable-dimensional spaces: a survey, Dissertationes Math. (Rozprawy Mat.) 216 (1983), 41. MR 722011
- William E. Haver, A covering property for metric spaces, Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973) Lecture Notes in Math., Vol. 375, Springer, Berlin, 1974, pp. 108–113. MR 0365504
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375–376. MR 152985, DOI 10.1090/S0002-9904-1963-10931-3
- Roman Pol, A weakly infinite-dimensional compactum which is not countable-dimensional, Proc. Amer. Math. Soc. 82 (1981), no. 4, 634–636. MR 614892, DOI 10.1090/S0002-9939-1981-0614892-2
- Roman Pol, A remark on $A$-weakly infinite-dimensional spaces, Topology Appl. 13 (1982), no. 1, 97–101. MR 637431, DOI 10.1016/0166-8641(82)90011-6
- Leonard R. Rubin, R. M. Schori, and John J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, General Topology Appl. 10 (1979), no. 1, 93–102. MR 519716, DOI 10.1016/0016-660x(79)90031-x
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 349-352
- MSC: Primary 54F45; Secondary 54B10
- DOI: https://doi.org/10.1090/S0002-9939-1986-0854045-0
- MathSciNet review: 854045