A characterization of harmonic foliations by variations of the metric
HTML articles powered by AMS MathViewer
- by Michael D. Hvidsten and Philippe Tondeur
- Proc. Amer. Math. Soc. 98 (1986), 359-362
- DOI: https://doi.org/10.1090/S0002-9939-1986-0854047-4
- PDF | Request permission
Abstract:
In this paper it is shown that a harmonic Riemannian foliation of a Riemannian manifold can be characterized as being a critical point of the energy of the foliation under certain variations of the manifold’s Riemannian metric. These variations are those induced by the flows of vector fields on the manifold.References
- M. Berger and D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold, J. Differential Geometry 3 (1969), 379–392. MR 266084
- David G. Ebin, The manifold of Riemannian metrics, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 11–40. MR 0267604
- J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1–68. MR 495450, DOI 10.1112/blms/10.1.1
- James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 164306, DOI 10.2307/2373037
- Franz W. Kamber and Philippe Tondeur, Harmonic foliations, Harmonic maps (New Orleans, La., 1980) Lecture Notes in Math., vol. 949, Springer, Berlin-New York, 1982, pp. 87–121. MR 673585
- Bruce L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. (2) 69 (1959), 119–132. MR 107279, DOI 10.2307/1970097
- Dennis Sullivan, A homological characterization of foliations consisting of minimal surfaces, Comment. Math. Helv. 54 (1979), no. 2, 218–223. MR 535056, DOI 10.1007/BF02566269
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 359-362
- MSC: Primary 57R30; Secondary 53C12, 58D17, 58E11, 58E20
- DOI: https://doi.org/10.1090/S0002-9939-1986-0854047-4
- MathSciNet review: 854047