The cohomology of an isospectral flow
HTML articles powered by AMS MathViewer
- by David Fried
- Proc. Amer. Math. Soc. 98 (1986), 363-368
- DOI: https://doi.org/10.1090/S0002-9939-1986-0854048-6
- PDF | Request permission
Abstract:
Building on work of Tomei, we compute the cohomology of the manifold of real symmetric tridiagonal matrices with distinct fixed eigenvalues. The proof uses the global dynamical properties of the Toda flow on this isospectral manifold.References
- Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115–207 (French). MR 51508, DOI 10.2307/1969728
- Raoul Bott and Hans Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964–1029. MR 105694, DOI 10.2307/2372843
- Michael W. Davis, Some aspherical manifolds, Duke Math. J. 55 (1987), no. 1, 105–139. MR 883666, DOI 10.1215/S0012-7094-87-05507-4 —, The homology of a space on which a reflection group acts, Ohio State Univ., preprint.
- Marvin J. Greenberg, Lectures on algebraic topology, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0215295
- W.-Y. Hsiang, R. S. Palais, and C. L. Terng, Geometry and topology of isoparametric submanifolds in Euclidean spaces, Proc. Nat. Acad. Sci. U.S.A. 82 (1985), no. 15, 4863–4865. MR 799109, DOI 10.1073/pnas.82.15.4863
- Jürgen Moser, Finitely many mass points on the line under the influence of an exponential potential–an integrable system, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974) Lecture Notes in Phys., Vol. 38, Springer, Berlin, 1975, pp. 467–497. MR 0455038
- S. Smale, The $\Omega$-stability theorem, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 289–297. MR 0271971
- Carlos Tomei, The topology of isospectral manifolds of tridiagonal matrices, Duke Math. J. 51 (1984), no. 4, 981–996. MR 771391, DOI 10.1215/S0012-7094-84-05144-5
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 363-368
- MSC: Primary 58F19; Secondary 57R19, 58F09, 58F25
- DOI: https://doi.org/10.1090/S0002-9939-1986-0854048-6
- MathSciNet review: 854048