Every exactly $2$-to-$1$ function on the reals has an infinite set of discontinuities
HTML articles powered by AMS MathViewer
- by Jo Heath
- Proc. Amer. Math. Soc. 98 (1986), 369-373
- DOI: https://doi.org/10.1090/S0002-9939-1986-0854049-8
- PDF | Request permission
Abstract:
It has long been known that the set of discontinuities of a $2$-to-$1$ function on either the closed or the open interval must be nonempty; this paper proves that the set must be infinite.References
- Karol Borsuk and R. Molski, On a class of continuous mappings, Fund. Math. 45 (1957), 84–98. MR 102063, DOI 10.4064/fm-45-1-84-98
- Paul Civin, Two-to-one mappings of manifolds, Duke Math. J. 10 (1943), 49–57. MR 8697
- Paul W. Gilbert, $n$-to-one mappings of linear graphs, Duke Math. J. 9 (1942), 475–486. MR 7106
- O. G. Harrold Jr., The non-existence of a certain type of continuous transformation, Duke Math. J. 5 (1939), 789–793. MR 1358
- O. G. Harrold Jr., Exactly $(k,1)$ transformations on connected linear graphs, Amer. J. Math. 62 (1940), 823–834. MR 2554, DOI 10.2307/2371492
- Venable Martin and J. H. Roberts, Two-to-one transformations on 2-manifolds, Trans. Amer. Math. Soc. 49 (1941), 1–17. MR 4129, DOI 10.1090/S0002-9947-1941-0004129-9
- J. Mioduszewski, On two-to-one continuous functions, Rozprawy Mat. 24 (1961), 43. MR 145490
- Sam B. Nadler Jr. and L. E. Ward Jr., Concerning exactly $(n,\,1)$ images of continua, Proc. Amer. Math. Soc. 87 (1983), no. 2, 351–354. MR 681847, DOI 10.1090/S0002-9939-1983-0681847-3
- J. H. Roberts, Two-to-one transformations, Duke Math. J. 6 (1940), 256–262. MR 1923
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 369-373
- MSC: Primary 54C10; Secondary 26A15
- DOI: https://doi.org/10.1090/S0002-9939-1986-0854049-8
- MathSciNet review: 854049