A PROPERTY OF IDEALS IN POLYNOMIAL RINGS

GENNADY LYUBEZNIK

Abstract. Every ideal in the polynomial ring in \(n \) variables over an infinite field has a reduction generated by \(n \) elements.

Eisenbud and Evans [2] proved that every ideal in \(k[X_1, \ldots, X_n] \) can be generated up to radical by \(n \) elements (where \(k \) is a field). Avinash Sathaye [7] and Mohan Kumar [5] proved a locally complete intersection in \(k[X_1, \ldots, X_n] \) can be generated by \(n \) elements.

In this short note we show that every ideal in \(k[X_1, \ldots, X_n] \) has a nice approximation generated by \(n \) elements. More precisely, we prove the following.

Theorem. Let \(k \) be an infinite field. Then every ideal \(I \) in \(k[X_1, \ldots, X_n] \) has a reduction \(J \) generated by \(n \) elements.

By [6], \(J \) is a reduction of \(I \) if there exists an integer \(r \) such that \(JJ^r = I^{r+1} \). Northcott and Rees [6] point out that \(J \) can be regarded as a simplified version of \(I \) preserving many properties of \(I \), in particular the multiplicities at minimal prime over-ideals. Moreover, \(J \) has the same radical as \(I \) and if \(I \) is locally a complete intersection, then it is the only reduction of itself, hence a connection between our result and those of Eisenbud and Evans and Sathaye and Kumar.

Proof of the theorem. Since \(k[X_1, \ldots, X_n] \) is a UFD, we can assume that \(n \geq \text{dim}(A/I) + 2 \). Let \(g_1, \ldots, g_r \) be a system of generators of \(I \). Set \(A = k[X_1, \ldots, X_n] \) and \(B = k[g_1, \ldots, g_r] \subset A \). The dimension of \(B \) is at most \(n \), since its quotient field is a subfield of \(k(X_1, \ldots, X_n) \) and therefore has transcendence degree \(\leq n \). Denote by \(P \) the ideal of \(B \) generated by \(g_1, \ldots, g_r \). Let \(\overline{P} \) be the completion of \(P \) in \(B_P \), the localization of \(B \) at \(P \) (i.e. \(\overline{P} \) is the maximal ideal of \(B_P \)). Since \(B_P \) is local of dimension \(\leq n \), by Burch [1] \(\overline{P} \) has a reduction \(\overline{Q} \) generated by \(n \) elements \(h_1, \ldots, h_n \). Let \(r \) be an integer such that \(\overline{Q} \overline{P}^r = \overline{P}^{r+1} \). Since \(\overline{Q} \) is \(\overline{P} \)-primary, there exists a unique \(P \)-primary ideal \(Q \subset B \), the image of which in \(B_P \) coincides with \(\overline{Q} \). Since \(P \) is a maximal ideal of \(B \), we see that the ideals \(Q \overline{P}^r \) and \(P^{r+1} \) are \(P \)-primary and their images in \(B_P \) coincide. Therefore, \(Q \overline{P}^r = P^{r+1} \) in \(B \), since there is a one-to-one correspondence between the \(\overline{P} \)-primary ideals of \(B_P \) and the \(P \)-primary ideals of \(B \).

Let \(J \) be the extension of \(Q \) in \(A \). Since the extension of \(P \) is \(I \) and \(Q \overline{P}^r = P^{r+1} \), we see that \(JJ^r = I^{r+1} \), i.e. \(J \) is a reduction of \(I \).
Let \(s \in B \setminus P \) be an element such that \(Q_s = (h_1, \ldots, h_n) \). Thus \(J_s = (h_1, \ldots, h_n) \).

Since \(Q \) is \(P \)-primary and \(P \) is a maximal ideal of \(B \), we see that \((s) + Q = (1) \), i.e., regarding \(s \) as an element of \(A \), that \((s) + J = (1) \). The conditions \((s) + J = (1) \) and \(J_s = (h_1, \ldots, h_n) \) imply that \(J/J^2 \) is generated by \(n \) elements \(h_1, \ldots, h_n \). Now Theorem 5 of Mohan Kumar [4] tells us that \(J \) is generated by \(n \) elements, since \(n \geq \dim(A/J) + 2 \). Q.E.D.

Remarks. 1. In a similar way one can prove that every ideal in a finitely generated \(n \)-dimensional algebra over an infinite field has a reduction generated by \(n + 1 \) elements.

2. For every prime ideal \(P \subset B \) containing \(I \) we have the dimension of

\[
\frac{(J + P \cdot I)}{P \cdot I}
\]

as a vector space over the quotient field of \(A/P \) is \(\geq \) height \(I \). This improves Eisenbud and Evans [2, 3] who proved only that \(J \subset P \cdot I \).

3. Some generalization of our theorem is possible to the case \(I \subset A[X] \), where \(A \) is an \((n - 1)\)-dimensional finitely generated algebra over an infinite field. For this one has to use S. Mandall's extension of Mohan Kumar's theorem to ideals in \(A[X] \) (cf. [5]).

Conjecture. Let \(A \) be a commutative Noetherian ring of dimension \(n - 1 \) such that the residue field of every maximal ideal of \(A \) is infinite. Let \(I \) be an ideal of \(A \) or \(A[X] \). Then \(I \) has a reduction generated by \(n \) elements.

References

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

Current address: Department of Mathematics, The University of Chicago, 5734 University Avenue, Chicago, Illinois 60637