On nilpotency in the Ado-Harish-Chandra theorem on Lie algebra representations
HTML articles powered by AMS MathViewer
- by Richard E. Block
- Proc. Amer. Math. Soc. 98 (1986), 406-410
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857931-0
- PDF | Request permission
Abstract:
Let $L$ be a finite-dimensional Lie algebra, over an arbitrary field, and regard $L$ as embedded in its enveloping algebra UL. Theorem. If $K$ is an ideal of $L$ and $K$ is nilpotent of class $q$, then for any $r$ there exists a finite-dimensional representation $\rho$ of $L$ which vanishes on all products (in UL) of $\geq qr + 1$ elements of $K$ and is faithful on the subspace of UL spanned by all products of $\leq r$ elements of $L$. This result sharpens (with respect to nilpotency) the Ado-Iwasawa theorem on the existence of faithful representations and the Harish-Chandra theorem on the existence of representations separating points of UL.References
- Richard E. Block, Commutative Hopf algebras, Lie coalgebras, and divided powers, J. Algebra 96 (1985), no. 1, 275–306. MR 808852, DOI 10.1016/0021-8693(85)90050-X
- N. Bourbaki, Éléments de mathématique. Fasc. XXVI. Groupes et algèbres de Lie. Chapitre I: Algèbres de Lie, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1285, Hermann, Paris, 1971 (French). Seconde édition. MR 0271276
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- Harish-Chandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900–915. MR 30945, DOI 10.2307/1969586
- G. Hochschild, Algebraic Lie algebras and representative functions, Illinois J. Math. 3 (1959), 499–523. MR 125910
- G. Hochschild, An addition to Ado’s theorem, Proc. Amer. Math. Soc. 17 (1966), 531–533. MR 194482, DOI 10.1090/S0002-9939-1966-0194482-0
- N. Jacobson, A note on Lie algebras of characteristic $p$, Amer. J. Math. 74 (1952), 357–359. MR 47026, DOI 10.2307/2372000
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR 0252485
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 406-410
- MSC: Primary 17B10; Secondary 17B30
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857931-0
- MathSciNet review: 857931