CLASS NUMBERS OF PURE FIELDS

R. A. MOLLIN

ABSTRACT. Necessary and sufficient conditions are given for the class number \(h_{K_i} \) of a pure field \(K = Q(m^{1/p^i}) \) (for \(i = 1, 2 \)) to be divisible by \(p^r \) for a given positive integer \(r \) and prime \(p \). Moreover the divisibility of \(h_{K_i} \) by \(p \) is linked with the \(p \)-rank of the class group of the \(K(\zeta) \) and prime divisors of \(m \), where \(\zeta \) is a primitive \(p \)th root of unity.

Finally we prove in an easy fashion that for a given odd prime \(p \) and any natural number \(t \) there exist infinitely many non-Galois algebraic number fields (in fact pure fields) of degree \(p^t \) (\(i = 1, 2 \)) over \(Q \) whose class numbers are all divisible by \(p^t \).

1. Introduction. Pure cubic, quartic, quintic, and sextic fields have been extensively studied by many authors (for example see [3–4] and [8–12]). Parry and Walter [11] studied the Galois closure \(L = Q(\zeta, \sqrt[p]{m}) \) of pure fields \(K_1 = Q(\sqrt[p]{m}) \) of prime degree and classified those \(m \) for which the class number \(h_L \) of \(L \) is relatively prime to \(p \). However necessary and sufficient conditions (for arbitrary \(p \)) such that \(h_K \) is divisible by \(p \) have failed to make their way into the literature. Our first result is to give such conditions for regular primes. We use this result as a tool for linking the divisibility of \(h_K \) by \(p \) with the rank of the Sylow \(p \)-subgroup of the class group of \(L \) and also with certain primes dividing \(m \). Moreover for the pure fields \(K_2 = Q(\sqrt[p]{m^2}) \) of prime squared degree we obtain necessary conditions and sufficient conditions for \(h_{K_2} \) to be divisible by \(p \), and use this result as a tool to provide applications similar to that of \(K_1 \) described above.

Finally when \(m \) is divisible by \(t \) primes congruent to 1 modulo \(p \) we give an explicit description of an unramified extension of \(K_i \) (\(i = 1 \) or 2) of degree \(p^t \) (therefore of infinitely many such \(K_i \)).

2. Pure fields. Throughout the remainder of the discussion the following notation will be in force.

\[Z = \text{the ring of rational integers.} \]
\[Q = \text{the field of rational numbers.} \]
\[p = \text{an odd rational prime.} \]
\[m > 1, \text{a } p \text{-power free rational integer.} \]
\[\zeta = \text{a primitive } p \text{th root of unity.} \]
\[k = Q(\zeta) = \text{the } p \text{th cyclotomic field.} \]
\[K_i = Q(m^{1/p^i}), \text{a pure field of degree } p^i, \text{where } i = 1 \text{ or } 2. \]
\[L_i = K_i k, \text{where } i = 1 \text{ or } 2. \]
\[G(F_1/F_2) = \text{the Galois group of a normal extension } F_1/F_2 \text{ of number fields.} \]
$U(F) = \text{the group of units of the ring of integers of a number field } F.$
$h_F = \text{the class number of a field } F.$
$C_F = \text{the ideal class group of a number field } F.$
$G(p) = \text{the Sylow } p\text{-subgroup of a group } G.$
$r(F,p) = \text{the rank of } C_F(p).$
$|y|_p = \text{the } p\text{-primary part of } y \in \mathbb{Z}.$
$a_1(p) = 1 + (p-3)/4.$
$a_2(p) = (p-1)^3/4.$
$b_1(p) = (p^2 - 5)/4.$
$b_2(p) = (p-1)^3/4 - (p-3)/2.$
$Q_1 = |U(L_1) : U(k)\prod_1 U(K_1)_i| \text{ with the product ranging over the conjugates (}K_1)_i \text{ of } K_1 \text{ over } Q.$
$Q_2 = |U(L_2) : U(L_1)\prod_1 U(K_2)_i| \text{ with the product ranging over the conjugates (}K_2)_i \text{ of } K_2 \text{ over } K_1.$

Finally we assume throughout that p is regular, i.e. that p does not divide h_k.

Now, we begin with a result which includes necessary conditions and sufficient conditions (but unfortunately not necessary and sufficient) for $h_K|_p = p^r$ for a given positive integer r. This result was motivated by the quintic ($p = 5, r = 1$) case given by Parry [8] of which part (i) of the following may be considered to be a generalization, and part (ii) provides a generalization of the cubic case ($p = 3, r = 1$) provided by Walter [12], which motivated this second result.

Theorem 2.1. Let r be a positive integer.

(i) If $p^a_1(p)+(r-1)(p-1)$ divides h_{K_1}, then p^r divides h_{K_1}. Conversely if p^r divides h_{K_1} and $p(p-2)(p-3)/2$ divides Q_1, then $p^a_1(p)+(r-1)(p-1)$ divides h_{L_1}. Furthermore, if p divides h_{K_1}, then p divides h_{L_1}.

(ii) Assume that p does not divide h_{L_1}. Then $p^a_2(p)+(r-1)(p-1)$ divides h_{L_2} implies that p^r divides h_{K_2}. If $p > 3$, p^r divides h_{K_2}, and $p(p-4)(p+1)/2$ divides Q_2, then $p^a_2(p)+(r-1)(p-1)$ divides h_{L_2}. Finally, if p divides h_{K_2}, then p divides h_{L_2}.

Proof. (i) We first note the following formulas obtained from Walter [12]:

(2.2) $h_{L_1}p^{b_1(p)} = Q_1h_kh_{K_1}^{-1}$, and

(2.3) Q_1 divides $p^{(p-1)(p-2)/2}$.

Now we assume that $p^a_1(p)+(r-1)(p-1)$ divides h_{K_1}. Hence from (2.2) we have that $|h_kp|^{-p}p^a_1(p)+b_1(p)+(r-1)(p-1)$ divides Q_1. But

$$a_1(p) + b_1(p) = 1 + (p-1)(p-2)/2.$$

Thus we get that p^r divides h_{K_1} from (2.3).

Conversely from (2.2) we have that $p^{((p-2)(p-3)/2)+r(p-1)-b_1(p)}$ divides h_{L_1}. But $(p-2)(p-3)/2 = a_1(p) + b_1(p) - (p-1)$. Hence $p^a_1(p)+(r-1)(p-1)$ divides h_{L_1}.

The last statement of part (i) follows from Iwasawa [6], since there is a K_1-prime above p which is totally ramified in L_1.

(ii) From Walter [12] we have

(2.4) $p^a_2(p)h_{L_2}^2h_{K_2}^{-1} = Q_2h_{L_1}h_{K_2}^{-1}$, and

(2.5) Q_2 divides $p^{(p-1)(p-2)/2}$.

We first assume that $p^a_2(p)+(r-1)(p-1)$ divides h_{L_2}. Then from (2.4) we have that $|h_{K_2}|P^a_2(p)+b_2(p)+(r-1)(p-1)$ divides Q_2. But $a_2(p)+b_2(p) = 1+p(p-1)(p-2)/2$. Thus (2.5) yields that p^r divides h_{K_2}.
Conversely if p^r divides h_{K_1}, then from (2.4) we have that h'_{L_2} is divisible by $p((p-4)(p+1)/2) + r(p-1) - b_2(p)$. But $(p-4)(p+1)/2 = a_2(p) + b_2(p) - (p-1)$. Hence $p^{a_2(p) + r(p-1)}$ divides h_{L_2}.

Finally the last statement of the theorem is immediate from Iwasawa [6]. Q.E.D.

We note that the above conditions are the "best possible", in the sense of being minimal. This fact is illustrated by the simplest case where $r = 1$ and $p = 3$, wherein we have $a_1(p) + (r - 1)(p - 1) = 1$. We have from Theorem 2.1 that if 3 does not divide h_{K_1}, then 3 does not divide h_{K_1}. Conversely if 3 does not divide h_{K_1}, then, since $Q_1 = 3$, we have that 3 does not divide h_{L_1} from (2.2), i.e. for $p = 3$ we have $p|h_{K_1}$ if and only if $p|h_{L_1}$. Moreover the necessary and sufficient conditions for p to divide h_{L_1} were given by Parry and Walter [11]. Finally, in this connection we note that it is not enough to know p-divisibility conditions for h_{L_1} in order to settle the question for h_{K_1}. We see this already for $p = 5$. Since $5^3|Q_1$ (see Parry [8]), then $5|h_{K_1}$ if and only if $5^2|h_{L_1}$ from Theorem 2.1.

The following result links the rank of $C_{L_i}(p)$ to the divisibility of h_{K_i} by p.

Theorem 2.2. Suppose that p^r divides Q_i, where $c = (p-2)(p-3)/2$ if $i = 1$ and $c = (p-4)(p+1)/2$ if $i = 2$. Then if $r(L_i,p) < p - 1$ and either $p > 7$ or $i = 2$ then p does not divide h_{K_i}. If $i = 1$, $3 < p < 7$ and $r(L_1,p) = 1$, then p does not divide h_{K_i}.

Proof. By Theorem 2.1, if p divides h_{K_1}, then $p^{a_2(p)}$ divides h_{L_1}. Now if $C_{L_1}(p)$ has an element of order p^2, then by Cornell and Rosen [2, Theorem 5, p. 7] we have that $r(L_1,p) \geq p - 1$. Thus $C_{L_1}(p)$ must be elementary abelian which implies that $r(L_1,p) = a_1(p)$. Hence $p - 1 \geq a_1(p)$ if $p > 7$ or $p = 2$, a contradiction. If $3 < p < 7$ and $i = 1$, then $1 \geq a_1(p)$, again a contradiction. Q.E.D.

We isolate the following special case which motivated the above.

Corollary 2.1 (Parry [8]). If $p = 5$ and $5|h_{K_1}$, then $C_{L_1}(p)$ is not cyclic.

The final result actually gives an explicit description of an unramified extension F of K_i of degree p^t whenever m is divisible by t primes $q \equiv 1 \pmod p$. The following is a generalization of the cubic case by Honda [3] which motivated our result. It is also a generalization of the quintic case by Parry [8]. In what follows ζ_q denotes a primitive qth root of unity.

Proposition 2.1. Suppose that m is divisible by $t \geq 1$ primes $q \equiv 1 \pmod p$. Let $F^{(q)}$ be the subfield of $Q(\zeta_q)$ such that $|F^{(q)} : Q| = p$, and let M be the compositum of the $t F^{(q)}$'s. Then MK_i is unramified over K_i, i.e. p^t divides h_{K_i}.

Proof. It is a straightforward application of Abhyankar's lemma (e.g. see [1, Theorem 3, p. 504] that MK_i is unramified over K_i. Q.E.D.

Note that in the above result we did not require that p be regular. Therefore we have the following proposition as an immediate consequence.

Proposition 2.2. Let p be an odd prime. Then given any natural number t there exist infinitely many non-Galois algebraic number fields of degree p^t ($i = 1$ or 2) over Q, whose class numbers are all divisible by p^t.

Note that the above is a generalization of the main result of Ishida [5, Theorem 1, p. 65]. Moreover our proof is much easier than that given in [5].
REFERENCES

10. _, *Pure quartic number fields whose class numbers are even*, J. Reine Angew. Math. 264 (1975), 102–112.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALGARY, CALGARY, ALBERTA, T2N 1N4, CANADA