Harnack’s inequality for Schrödinger operators and the continuity of solutions
HTML articles powered by AMS MathViewer
- by F. Chiarenza, E. Fabes and N. Garofalo
- Proc. Amer. Math. Soc. 98 (1986), 415-425
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857933-4
- PDF | Request permission
Abstract:
We prove a uniform Harnack inequality for nonnegative solutions of $Au = Vu$, where $A$ is a second order elliptic operator in divergence form, and $V$ belongs to the Stummel class of potentials. As a consequence we obtain the continuity of a general weak solution. These results extend the previous work of Aizenman and Simon for $\Delta u = Vu$.References
- M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), no. 2, 209–273. MR 644024, DOI 10.1002/cpa.3160350206
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- Gianni Dal Maso and Umberto Mosco, Wiener criteria and energy decay for relaxed Dirichlet problems, Arch. Rational Mech. Anal. 95 (1986), no. 4, 345–387. MR 853783, DOI 10.1007/BF00276841
- Ennio De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25–43 (Italian). MR 0093649
- E. B. Fabes and D. W. Stroock, The $L^p$-integrability of Green’s functions and fundamental solutions for elliptic and parabolic equations, Duke Math. J. 51 (1984), no. 4, 997–1016. MR 771392, DOI 10.1215/S0012-7094-84-05145-7
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- W. Littman, G. Stampacchia, and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 43–77. MR 161019
- Jürgen Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577–591. MR 159138, DOI 10.1002/cpa.3160140329
- Benjamin Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1973/74), 101–106. MR 350297, DOI 10.4064/sm-49-2-101-106
- J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931–954. MR 100158, DOI 10.2307/2372841 M. V. Safanov, Harnack’s inequality for elliptic equations and the Hölder property of their solutions, J. Soviet Math. 21 (1983), 851-863.
- Martin Schechter, Spectra of partial differential operators, North-Holland Series in Applied Mathematics and Mechanics, Vol. 14, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1971. MR 0447834
- Neil S. Trudinger, Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations, Invent. Math. 61 (1980), no. 1, 67–79. MR 587334, DOI 10.1007/BF01389895
- Neil Falkner, Feynman-Kac functionals and positive solutions of ${1\over 2}\Delta u+qu=0$, Z. Wahrsch. Verw. Gebiete 65 (1983), no. 1, 19–33. MR 717930, DOI 10.1007/BF00534991
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 415-425
- MSC: Primary 35B99; Secondary 35D10, 35J15
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857933-4
- MathSciNet review: 857933