Prime ideals in algebras of continuous functions
Authors:
H. G. Dales and R. J. Loy
Journal:
Proc. Amer. Math. Soc. 98 (1986), 426-430
MSC:
Primary 46J10; Secondary 46J20, 54C40
DOI:
https://doi.org/10.1090/S0002-9939-1986-0857934-6
MathSciNet review:
857934
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a compact Hausdorff space, and let
be the Banach algebra of all continuous complex-valued functions on
. It is known that, assuming the continuum hypothesis, any nonmaximal, prime ideal
such that
is the kernel of a discontinuous homomorphism from
into some Banach algebra. Here we consider the converse question of which ideals can be the kernels of such a homomorphism. Partial results are obtained in the case where
is metrizable.
- [1] W. G. Bade and P. C. Curtis Jr., Homomorphisms of commutative Banach algebras, Amer. J. Math. 82 (1960), 589–608. MR 117577, https://doi.org/10.2307/2372972
- [2] H. G. Dales, A discontinuous homomorphism from 𝐶(𝑋), Amer. J. Math. 101 (1979), no. 3, 647–734. MR 533196, https://doi.org/10.2307/2373803
- [3] H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), no. 2, 129–183. MR 500923, https://doi.org/10.1112/blms/10.2.129
- [4] H. G. Dales and W. H. Woodin, An introduction to independence for analysts, London Mathematical Society Lecture Note Series, vol. 115, Cambridge University Press, Cambridge, 1987. MR 942216
- [5] Jean Esterle, Semi-normes sur \cal𝐶(𝐾), Proc. London Math. Soc. (3) 36 (1978), no. 1, 27–45 (French). MR 0482215, https://doi.org/10.1112/plms/s3-36.1.27
- [6]
-, Solution d'un problème d'Ërdos, Gillman et Hendriksen et application a l'étude des homomorphisme de
, Acta Math. Acad. Sci. Hungar. 30 (1977), 113-127.
- [7] Jean Esterle, Sur l’existence d’un homomorphisme discontinu de \cal𝐶(𝐾), Proc. London Math. Soc. (3) 36 (1978), no. 1, 46–58 (French). MR 0482217, https://doi.org/10.1112/plms/s3-36.1.46
- [8] Jean Esterle, Injection de semi-groupes divisibles dans des algèbres de convolution et construction d’homomorphismes discontinus de \cal𝐶(𝐾), Proc. London Math. Soc. (3) 36 (1978), no. 1, 59–85 (French). MR 0482218, https://doi.org/10.1112/plms/s3-36.1.59
- [9] J. Esterle, Homomorphismes discontinus des algèbres de Banach commutatives séparables, Studia Math. 66 (1979), no. 2, 119–141 (French, with English summary). MR 565154, https://doi.org/10.4064/sm-66-2-119-141
- [10] Leonard Gillman and Meyer Jerison, Rings of continuous functions, Springer-Verlag, New York-Heidelberg, 1976. Reprint of the 1960 edition; Graduate Texts in Mathematics, No. 43. MR 0407579
- [11] Sandy Grabiner, A formal power series operational calculus for quasi-nilpotent operators. II, J. Math. Anal. Appl. 43 (1973), 170–192. MR 358410, https://doi.org/10.1016/0022-247X(73)90267-9
- [12] B. E. Johnson, Norming 𝐶(𝑈) and related algebras, Trans. Amer. Math. Soc. 220 (1976), 37–58. MR 415326, https://doi.org/10.1090/S0002-9947-1976-0415326-6
- [13] Allan M. Sinclair, Homomorphisms from 𝐶₀(𝑅), J. London Math. Soc. (2) 11 (1975), no. 2, 165–174. MR 377517, https://doi.org/10.1112/jlms/s2-11.2.165
- [14] Russell C. Walker, The Stone-Čech compactification, Springer-Verlag, New York-Berlin, 1974. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83. MR 0380698
- [15] W. H. Woodin, Set theory and discontinuous homomorphisms from Banach algebras, Mem. Amer. Math. Soc. (to appear).
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J10, 46J20, 54C40
Retrieve articles in all journals with MSC: 46J10, 46J20, 54C40
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1986-0857934-6
Keywords:
Prime ideals,
discontinuous homomorphisms
Article copyright:
© Copyright 1986
American Mathematical Society