Convergence of cardinal series
HTML articles powered by AMS MathViewer
- by Carl de Boor, Klaus Höllig and Sherman Riemenschneider
- Proc. Amer. Math. Soc. 98 (1986), 457-460
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857940-1
- PDF | Request permission
Abstract:
The result of this paper is a generalization of our characterization of the limits of multivariate cardinal splines. Let ${M_n}$ denote the $n$-fold convolution of a compactly supported function $M \in {L_2}({{\mathbf {R}}^d})$ and denote by \[ {S_n}: = \left \{ {\sum \limits _{j \in {{\mathbf {Z}}^d}} {c(j){M_n}( \cdot - j):c \in {l_2}({{\mathbf {Z}}^d})} } \right \}\] the span of the translates of ${M_n}$. We prove that there exists a set $\Omega$ with ${\operatorname {vol} _d}(\Omega ) = {(2\pi )^d}$ such that for any $f \in {L_2}({{\mathbf {R}}^d})$, \[ \operatorname {dist} (f,{S_n}) \to 0\quad {\text {as }}n \to \infty ,\] if and only if the support of the Fourier transform of $f$ is contained in $\Omega$.References
- C. de Boor and K. Höllig, $B$-splines from parallelepipeds, J. Analyse Math. 42 (1982/83), 99–115. MR 729403, DOI 10.1007/BF02786872
- Carl de Boor, Klaus Höllig, and Sherman Riemenschneider, Convergence of bivariate cardinal interpolation, Constr. Approx. 1 (1985), no. 2, 183–193. MR 891539, DOI 10.1007/BF01890030
- Carl de Boor, Klaus Höllig, and Sherman Riemenschneider, Bivariate cardinal interpolation by splines on a three-direction mesh, Illinois J. Math. 29 (1985), no. 4, 533–566. MR 806466 —, The limits of multivariate cardinal splines, Proc. Conf. on Multidimensional Constructive Function Theory (W. Schempp and K. Zeller, eds.), Oberwolfach, 1985.
- I. J. Schoenberg, Notes on spline functions. III. On the convergence of the interpolating cardinal splines as their degree tends to infinity, Israel J. Math. 16 (1973), 87–93. MR 425438, DOI 10.1007/BF02761973 —, Cardinal spline interpolation, SIAM, Philadelphia, Pa., 1973.
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 457-460
- MSC: Primary 41A30
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857940-1
- MathSciNet review: 857940