On the volumes of images of holomorphic mappings in $\textbf {C}^ n$
HTML articles powered by AMS MathViewer
- by H. Alexander
- Proc. Amer. Math. Soc. 98 (1986), 461-466
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857941-3
- PDF | Request permission
Abstract:
Let $f$ be a holomorphic map from the unit ball in complex $n$-space to complex $n$-space. We establish a lower bound for the volume, taken without multiplicity, of the image of $f$. The estimate is in terms of the boundary values of $f$. This generalizes some known results in one complex variable. The proof uses the methods of uniform algebras.References
- H. Alexander, Volumes of images of varieties in projective space and in Grassmannians, Trans. Amer. Math. Soc. 189 (1974), 237–249. MR 357850, DOI 10.1090/S0002-9947-1974-0357850-9
- H. Alexander, B. A. Taylor, and J. L. Ullman, Areas of projections of analytic sets, Invent. Math. 16 (1972), 335–341. MR 302935, DOI 10.1007/BF01425717
- Sheldon Axler and Joel H. Shapiro, Putnam’s theorem, Alexander’s spectral area estimate, and VMO, Math. Ann. 271 (1985), no. 2, 161–183. MR 783550, DOI 10.1007/BF01455985
- Catherine Bandle, Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, vol. 7, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. MR 572958
- H. J. Bremermann, On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Šilov boundaries, Trans. Amer. Math. Soc. 91 (1959), 246–276. MR 136766, DOI 10.1090/S0002-9947-1959-0136766-9
- Edwin Hewitt and Karl Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 0188387
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- Charles S. Stanton, Counting functions and majorization for Jensen measures, Pacific J. Math. 125 (1986), no. 2, 459–468. MR 863538, DOI 10.2140/pjm.1986.125.459
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 461-466
- MSC: Primary 32H35; Secondary 31B20, 32E25
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857941-3
- MathSciNet review: 857941