A simple proof of the classification of rational rotation $C^ \ast$-algebras
HTML articles powered by AMS MathViewer
- by Hong Sheng Yin
- Proc. Amer. Math. Soc. 98 (1986), 469-470
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857943-7
- PDF | Request permission
Abstract:
A simple proof of the classification of rational rotation ${C^*}$-algebras is given.References
- Marc De Brabanter, The classification of rational rotation $C^{\ast }$-algebras, Arch. Math. (Basel) 43 (1984), no. 1, 79–83. MR 758343, DOI 10.1007/BF01193614
- Shaun Disney and Iain Raeburn, Homogeneous $C^\ast$-algebras whose spectra are tori, J. Austral. Math. Soc. Ser. A 38 (1985), no. 1, 9–39. MR 765447, DOI 10.1017/S1446788700022576
- G. A. Elliott, On the $K$-theory of the $C^{\ast }$-algebra generated by a projective representation of a torsion-free discrete abelian group, Operator algebras and group representations, Vol. I (Neptun, 1980) Monogr. Stud. Math., vol. 17, Pitman, Boston, MA, 1984, pp. 157–184. MR 731772
- Raphael Høegh-Krohn and Tor Skjelbred, Classification of $C^{\ast }$-algebras admitting ergodic actions of the two-dimensional torus, J. Reine Angew. Math. 328 (1981), 1–8. MR 636190, DOI 10.1515/crll.1981.328.1
- Judith A. Packer, $C^*$-algebras generated by projective representations of the discrete Heisenberg group, J. Operator Theory 18 (1987), no. 1, 41–66. MR 912812
- M. Pimsner and D. Voiculescu, Exact sequences for $K$-groups and Ext-groups of certain cross-product $C^{\ast }$-algebras, J. Operator Theory 4 (1980), no. 1, 93–118. MR 587369
- Marc A. Rieffel, $C^{\ast }$-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), no. 2, 415–429. MR 623572, DOI 10.2140/pjm.1981.93.415
- Marc A. Rieffel, The cancellation theorem for projective modules over irrational rotation $C^{\ast }$-algebras, Proc. London Math. Soc. (3) 47 (1983), no. 2, 285–302. MR 703981, DOI 10.1112/plms/s3-47.2.285
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 469-470
- MSC: Primary 46L05; Secondary 46L80
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857943-7
- MathSciNet review: 857943