Two-bridge knots with unknotting number one
HTML articles powered by AMS MathViewer
- by Taizo Kanenobu and Hitoshi Murakami
- Proc. Amer. Math. Soc. 98 (1986), 499-502
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857949-8
- PDF | Request permission
Abstract:
We determine all two-bridge knots with unknotting number one. In fact we prove that a two-bridge knot has unknotting number one iff there exist positive integers $p$, $m$, and $n$ such that $(m,n) = 1$ and $2mn = p \pm 1$, and it is equivalent to $S(p,2{n^2})$ in Schubert’s notation. It is also shown that it can be expressed as $C(a,{a_1},{a_2}, \ldots ,{a_k}, \pm 2, - {a_k}, \ldots , - {a_2}, - {a_1})$ using Conway’s notation.References
- J. W. Alexander and G. B. Briggs, On types of knotted curves, Ann. of Math. (2) 28 (1926/27), no. 1-4, 562–586. MR 1502807, DOI 10.2307/1968399
- Steven A. Bleiler, A note on unknotting number, Math. Proc. Cambridge Philos. Soc. 96 (1984), no. 3, 469–471. MR 757839, DOI 10.1017/S0305004100062381
- J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329–358. MR 0258014 M. Culler and P. B. Shalen, Incompressible surfaces and surgery on knots, preprint.
- Marc Culler, C. McA. Gordon, J. Luecke, and Peter B. Shalen, Dehn surgery on knots, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 1, 43–45. MR 788388, DOI 10.1090/S0273-0979-1985-15357-1 C. D. Hodgson, Involutions and isotopies of lens spaces, Master Thesis, Univ. of Melbourne, 1981.
- W. B. Raymond Lickorish, The unknotting number of a classical knot, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982) Contemp. Math., vol. 44, Amer. Math. Soc., Providence, RI, 1985, pp. 117–121. MR 813107, DOI 10.1090/conm/044/813107
- José M. Montesinos, Surgery on links and double branched covers of $S^{3}$, Knots, groups, and $3$-manifolds (Papers dedicated to the memory of R. H. Fox), Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J., 1975, pp. 227–259. MR 0380802
- Louise Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737–745. MR 383406
- Yasutaka Nakanishi, A note on unknotting number, Math. Sem. Notes Kobe Univ. 9 (1981), no. 1, 99–108. MR 634000
- Horst Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1956), 133–170 (German). MR 82104, DOI 10.1007/BF01473875 L. Siebenmann, Exercices sur les nœuds rationnels, preprint, Orsay, 1975.
- Wilbur Whitten, Knot complements and groups, Topology 26 (1987), no. 1, 41–44. MR 880506, DOI 10.1016/0040-9383(87)90019-X
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 499-502
- MSC: Primary 57M25
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857949-8
- MathSciNet review: 857949