Maps of the interval with every point chain recurrent
HTML articles powered by AMS MathViewer
- by Louis Block and Ethan M. Coven
- Proc. Amer. Math. Soc. 98 (1986), 513-515
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857952-8
- PDF | Request permission
Abstract:
We show that if $f$ is a continuous map of a compact interval to itself and every point is chain recurrent, then either ${f^2}$ is the identity map or ${f^2}$ is turbulent.References
- Marcy Barge and Joe Martin, Dense periodicity on the interval, Proc. Amer. Math. Soc. 94 (1985), no. 4, 731–735. MR 792293, DOI 10.1090/S0002-9939-1985-0792293-8
- L. S. Block and W. A. Coppel, Stratification of continuous maps of an interval, Trans. Amer. Math. Soc. 297 (1986), no. 2, 587–604. MR 854086, DOI 10.1090/S0002-9947-1986-0854086-8
- Louis Block and Ethan M. Coven, Topological conjugacy and transitivity for a class of piecewise monotone maps of the interval, Trans. Amer. Math. Soc. 300 (1987), no. 1, 297–306. MR 871677, DOI 10.1090/S0002-9947-1987-0871677-X
- Louis Block and John E. Franke, The chain recurrent set, attractors, and explosions, Ergodic Theory Dynam. Systems 5 (1985), no. 3, 321–327. MR 805832, DOI 10.1017/S0143385700002972
- Louis Block, John Guckenheimer, MichałMisiurewicz, and Lai Sang Young, Periodic points and topological entropy of one-dimensional maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) Lecture Notes in Math., vol. 819, Springer, Berlin, 1980, pp. 18–34. MR 591173
- A. M. Blokh, Sensitive mappings of an interval, Uspekhi Mat. Nauk 37 (1982), no. 2(224), 189–190 (Russian). MR 650765
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 513-515
- MSC: Primary 54H20; Secondary 34C35, 54E45, 58F08, 58F20
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857952-8
- MathSciNet review: 857952