Monotone and open Whitney maps
HTML articles powered by AMS MathViewer
- by Alejandro Illanes
- Proc. Amer. Math. Soc. 98 (1986), 516-518
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857953-X
- PDF | Request permission
Abstract:
In this paper we prove that if $X$ is a locally connected continuum, then there exists a monotone and open Whitney map for ${2^X}$.References
- R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc. 55 (1949), 1101–1110. MR 35429, DOI 10.1090/S0002-9904-1949-09334-5
- Włodzimierz J. Charatonik, A continuum $X$ which has no confluent Whitney map for $2^{X}$, Proc. Amer. Math. Soc. 92 (1984), no. 2, 313–314. MR 754729, DOI 10.1090/S0002-9939-1984-0754729-7
- C. Eberhart and S. B. Nadler Jr., The dimension of certain hyperspaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 1027–1034. MR 303513
- Karl Menger, Untersuchungen über allgemeine Metrik, Math. Ann. 100 (1928), no. 1, 75–163 (German). MR 1512479, DOI 10.1007/BF01448840
- Edwin E. Moise, Grille decomposition and convexification theorems for compact metric locally connected continua, Bull. Amer. Math. Soc. 55 (1949), 1111–1121. MR 35430, DOI 10.1090/S0002-9904-1949-09336-9
- Sam B. Nadler Jr., Hyperspaces of sets, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49, Marcel Dekker, Inc., New York-Basel, 1978. A text with research questions. MR 0500811
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 516-518
- MSC: Primary 54B20; Secondary 54F25
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857953-X
- MathSciNet review: 857953