Power series and smooth functions equivalent to a polynomial
HTML articles powered by AMS MathViewer
- by Wojciech Kucharz
- Proc. Amer. Math. Soc. 98 (1986), 527-533
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857956-5
- PDF | Request permission
Abstract:
An algebraic criterion is given for a power series in $n$ variables over a field of characteristic 0 to be equivalent to a polynomial in $n - k$ variables over the ring of power series in $k$ variables. For convergent power series over the reals or complexes a geometric interpretation of the criterion is established. An analogous sufficient condition is obtained for germs of smooth functions. Most of the previously known results follow easily from the criterion.References
- J. Bochnak, Relèvement des jets, Séminaire Pierre Lelong (Analyse) (année 1970–1971), Lecture Notes in Math., Vol. 275, Springer, Berlin, 1972, pp. 106–118 (French). MR 0377971
- J. Bochnak, W. Kucharz, and M. Shiota, On algebraicity of global real analytic sets and functions, Invent. Math. 70 (1982/83), no. 1, 115–156. MR 679776, DOI 10.1007/BF01393201 D. Cerveau and J. F. Mattei, Formes intégrables holomorphes singulières, Astérisque 97 (1982).
- N. Levinson, A canonical form for an analytic function of several variables at a critical point, Bull. Amer. Math. Soc. 66 (1960), 68–69. MR 145099, DOI 10.1090/S0002-9904-1960-10397-7
- N. Levinson, A polynomial canonical form for certain analytic functions of two variable at a critical point, Bull. Amer. Math. Soc. 66 (1960), 366–368. MR 145100, DOI 10.1090/S0002-9904-1960-10453-3
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Masahiro Shiota, Equivalence of differentiable mappings and analytic mappings, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 237–322. MR 644558
- Jean-Claude Tougeron, Idéaux de fonctions différentiables. I, Ann. Inst. Fourier (Grenoble) 18 (1968), no. fasc. 1, 177–240 (French). MR 240826 —, $G$-stabilité des germes d’applications différentiables, preprint, Université de Rennes, 1971.
- Jean-Claude Tougeron, Idéaux de fonctions différentiables, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 71, Springer-Verlag, Berlin-New York, 1972. MR 0440598
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 527-533
- MSC: Primary 32B05; Secondary 58C25
- DOI: https://doi.org/10.1090/S0002-9939-1986-0857956-5
- MathSciNet review: 857956