On the primitivity of polynomial rings with nonprimitive coefficient rings
HTML articles powered by AMS MathViewer
- by T. J. Hodges
- Proc. Amer. Math. Soc. 98 (1986), 553-558
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861748-0
- PDF | Request permission
Abstract:
For a hereditary noetherian prime ring $R$ with classical quotient ring $Q$, various necessary and sufficient conditions are given for the polynomial ring $R[{X_1}, \ldots ,{X_n}]$ to be primitive when $R$ itself is not primitive. It is shown that if $R$ is a local hereditary noetherian prime ring, then $R[X]$ is primitive if and only if $Q[X]$ is primitive. Similarly, for a semilocal hereditary noetherian prime ring $R$ whose Jacobson radical contains a nonzero central element, it is shown that $R[{X_1}, \ldots ,{X_n}]$ is primitive if and only if $Q[{X_1}, \ldots ,{X_n}]$ is primitive.References
- S. A. Amitsur and Lance W. Small, Polynomials over division rings, Israel J. Math. 31 (1978), no. 3-4, 353–358. MR 516156, DOI 10.1007/BF02761500 A. W. Chatters, Non-commutative unique factorisation domains, Math. Proc. Cambridge Philos. Soc. 95 (1984), 49-54.
- A. W. Chatters and C. R. Hajarnavis, Rings with chain conditions, Research Notes in Mathematics, vol. 44, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. MR 590045
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- David Eisenbud and J. C. Robson, Hereditary Noetherian prime rings, J. Algebra 16 (1970), 86–104. MR 291222, DOI 10.1016/0021-8693(70)90042-6
- K. R. Goodearl, Localization and splitting in hereditary noetherian prime rings, Pacific J. Math. 53 (1974), 137–151. MR 354748
- T. J. Hodges, An example of a primitive polynomial ring, J. Algebra 90 (1984), no. 1, 217–219. MR 757091, DOI 10.1016/0021-8693(84)90208-4
- J. C. McConnell, Localisation in enveloping rings, J. London Math. Soc. 43 (1968), 421–428. MR 228532, DOI 10.1112/jlms/s1-43.1.421
- Bo Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR 0389953
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 553-558
- MSC: Primary 16A20
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861748-0
- MathSciNet review: 861748