A note on the automorphism groups of Lie module triple systems
HTML articles powered by AMS MathViewer
- by Nora C. Hopkins
- Proc. Amer. Math. Soc. 98 (1986), 569-575
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861752-2
- PDF | Request permission
Abstract:
Using representation theory and well-known facts about automorphism groups of reductive Lie algebras, the automorphism group of a basic Lie module triple system $(M,\{ ,,\} ,\mathcal {L},b,\phi )$ over an algebraically closed field of characteristic zero is related to the automorphism group of the Lie algebra $\mathcal {L}$, the automorphism group of the standard embedding $\mathcal {S}$ of $(M,\{ ,,\} )$, and the automorphism group of the split null extension $\mathcal {S}$ of $\mathcal {L}$ by $M$.References
- Nora C. Hopkins, Decomposition of Lie module triple systems, Algebras Groups Geom. 3 (1986), no. 4, 399–413. MR 901807
- Nora C. Hopkins, On the derivation algebras of Lie module triple systems, J. Algebra 111 (1987), no. 2, 520–527. MR 916184, DOI 10.1016/0021-8693(87)90234-1
- Nora C. Hopkins, Some structure theory for a class of triple systems, Trans. Amer. Math. Soc. 289 (1985), no. 1, 203–212. MR 779060, DOI 10.1090/S0002-9947-1985-0779060-0
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- William G. Lister, A structure theory of Lie triple systems, Trans. Amer. Math. Soc. 72 (1952), 217–242. MR 45702, DOI 10.1090/S0002-9947-1952-0045702-9
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 569-575
- MSC: Primary 17B60; Secondary 17B40
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861752-2
- MathSciNet review: 861752