Morrey space
HTML articles powered by AMS MathViewer
- by Cristina T. Zorko
- Proc. Amer. Math. Soc. 98 (1986), 586-592
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861756-X
- PDF | Request permission
Abstract:
For $1 \leq p < \infty$, $\Omega$ an open and bounded subset of ${R^n}$, and a nonincreasing and nonnegative function $\varphi$ defined in $(0,{\rho _0}]$, ${\rho _0} = \operatorname {diam} \Omega$, we introduce the space $\mathcal {M}_{\varphi ,0}^p(\Omega )$ of locally integrable functions satisfying \[ {\inf _{c \in C}}\left \{ {\int \limits _{B({x_0},\rho ) \cap \Omega } {|f(x) - c{|^p}dx} } \right \} \leq A|B({x_0},\rho )|{\varphi ^p}(\rho )\] for every ${x_0} \in \Omega$ and $0 < \rho \leq {\rho _0}$, where $|B({x_0},\rho )|$ denotes the volume of the ball centered in ${x_0}$ and radius $\rho$. The constant $A > 0$ does not depend on $({x_0},\rho )$. (i) We list some results on the structure, regularity, and density properties of the space so defined. (ii) $\mathcal {M}_{\varphi ,0}^p$ is represented as the dual of an atomic space.References
- Josefina Álvarez Alonso, The distribution function in the Morrey space, Proc. Amer. Math. Soc. 83 (1981), no. 4, 693–699. MR 630039, DOI 10.1090/S0002-9939-1981-0630039-0
- S. Campanato, Proprietà di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 18 (1964), 137–160 (Italian). MR 167862
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317 J. L. Journé, Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, Springer-Verlag, 1983.
- Jaak Peetre, On the theory of ${\cal L}_{p},\,_{\lambda }$ spaces, J. Functional Analysis 4 (1969), 71–87. MR 0241965, DOI 10.1016/0022-1236(69)90022-6
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 586-592
- MSC: Primary 46E35; Secondary 42B30
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861756-X
- MathSciNet review: 861756