APPROXIMATION BY RATIONAL FUNCTIONS

RONALD A. DEVORE

ABSTRACT. Making use of the Hardy-Littlewood maximal function, we give a new proof of the following theorem of Pekarski: If f' is in $L \log L$ on a finite interval, then f can be approximated in the uniform norm by rational functions of degree n to an error $O(1/n)$ on that interval.

It is well known that approximation by rational functions of degree n can produce a dramatically smaller error than that for polynomials of degree n. The best example of this is Newman's theorem [3] which shows that the function $f(x) = |x|$ can be approximated on $[-1,1]$ by rational functions of degree n to an error $O(\exp(-c\sqrt{n}))$, whereas for polynomials of degree n the error is known to be larger than c/n. Other authors have shown that such improvement also occurs for certain classes of functions. For example, V. Popov [5] showed that if $f' \in L^p[0,1]$, with $p > 1$, then $r_n(f) = O(n^{-1})$ where $r_n(f)$ is the error in approximating f by rational functions R of degree at most n in the uniform norm:

$$r_n(f) := \inf_{\deg(R) = n} \|f - R\|_{[0,1]}.$$

To obtain this order of approximation for polynomials requires roughly speaking that $f' \in L_{\infty}$. A striking limiting version of Popov's result was given by A. A. Pekarski [4], who showed that the same conclusion holds when $f' \in L \log L$, i.e. if $|f'| \log(1 + |f'|)$ is integrable.

The Popov and Pekarski proofs of these theorems are quite technical, and it was the purpose of [2] to introduce an elementary technique using maximal functions and partitions of unity for rational functions in order to give a simpler proof of Popov's results. The point of this note is to show that a modification of the technique in [2], albeit a little tricky, will also prove Pekarski's theorem.

The idea in [2] is to partition $[0,1]$ into a set I of disjoint intervals I and construct associated rational functions ψ_I which form a partition of unity: $\sum_{I \in I} \psi_I \equiv 1$. Our rational approximation R is then given by

$$R(x) := \sum_{I \in I} f(x_I) \psi_I(x)$$

with x_I the center of I. Of course, the intervals I depend on f.

The rational functions ψ_I are constructed using a standard method for partitions of unity. Namely, $\psi_I := \phi_I / \Phi$ with $\Phi := \sum \phi_I$. In the case of Popov's theorem, the ϕ_I depend only on the interval I and all can be taken of degree 4. The intervals

Received by the editors October 3, 1985.
Supported by the National Science Foundation Grant DMS 8320562.

©1986 American Mathematical Society
0002-9939/86 $1.00 + $.25 per page

601

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
I are determined by using the Hardy-Littlewood maximal functions M which is defined for $g \in L_1$ by

$$Mg(x) := \sup_{J \ni x} \frac{1}{|J|} \int_J |g|,$$

where the sup is taken over all intervals $J \subset [0,1]$ which contain x.

To prove the Pekarski theorem, we will need to let the degree of ϕ_I depend on f. The desired properties of c_p are given in the following lemma.

Lemma 1. For each even integer $m \geq 8$, and each interval I there is a nonnegative rational function c_p of degree at most $6m$ with the following properties:

(i) $c_p(x) > 1$, $x \in I$,

(ii) $c_p(x) < 8 \cdot 2^{-\sqrt{n}/4}$, if $2^{-m/\lambda}|I| \leq \text{dist}(x,I) \leq 1/2$ and $0 < \lambda < m$,

(iii) $c_p(x) < 4(a^2 + 1)^{-m}$, if $\text{dist}(x,I) \geq a|I|$ and $a > 0$.

We postpone the proof of this lemma until the end of the paper. We now use this result to prove the following.

Theorem. There is an absolute constant $c > 0$ such that for $n = 1,2,\ldots$

$$r_n(f) \leq c \|M(f')\|_{L^1}^{-1}, \quad n = 1, 2, \ldots,$$

whenever $M(f')$ is in $L_1[0,1]$.

Remark: It is well known (see e.g. [1]) that $g \in L \log L$ is equivalent to $M(g) \in L_1$ and therefore this theorem is equivalent to Pekarski’s.

Proof. It is enough to consider functions f with $\|M(f')\|_1 = 1$. It follows that $\|f'\|_1 \leq 1$ and hence there is a collection I of at most n intervals I which are a disjoint partition of $[0,1]$ and satisfy

(2) $\frac{1}{n} \leq \int_I |f'| \leq \frac{2}{n}, \quad I \in I$.

For each $I \in I$, we let m_I be the smallest integer which is both larger than 7 and also larger than $4n \int_I M(f')$. If ϕ_I is the function of Lemma 1 for the interval I and for $m = m_I$, we let $\Phi := \sum_{I \in I} \phi_I$. By Lemma 1, $\Phi \geq 1$, on $[0,1]$ and hence the functions ψ_I satisfy

(3) $\psi_I(x) \leq \phi_I(x), \quad 0 \leq x \leq 1$.

We now take R as in (1) with x_I the center of I. Since $\sum m_I \leq 16n$, R has degree $\leq 96n$. To estimate $|f(x) - R(x)|$, we let I_0 denote the interval of I which contains x; I_1 the interval of I immediately to the right of I_0; I_{-1} the interval immediately to the left of I_0; and so on. We have

(4) $f(x) - R(x) = \sum_{I \in I} (f(x) - f(x_I))\psi_I(x) =: \sum_{-1} + \sum_0 + \sum_1$

Where \sum_{-1} denotes the sum over those $I = I_k$ with $k < -1$, \sum_1 the sum over those $I = I_k$ with $k > 1$ and \sum_0 the sum of the terms $k = -1,0,1$. Clearly, $|f(x) - f(x_{I_k})| \leq 2(|k| + 1)/n$. Since the ψ_I are nonnegative and add up to one, we have

(5) $\sum_0 \leq 12/n$.

The estimates for \(\sum_{-1} \) and \(\sum_{1} \) are the same and therefore we estimate only \(\sum_{1} \). For this, we fix \(k > 1 \) and estimate the term in \(\sum_{1} \) corresponding to \(I = I_k \).

We have

\[
e_k := |f(x) - f(x_I)|\psi_I(x) \leq \frac{2(k + 1)}{n} \psi_I(x) \leq \frac{4k}{n} \phi_I(x).
\]

We write \(\text{dist}(x, I) =: a|I| \), with \(a \geq 0 \), and we consider three cases.

Case \(a \geq \sqrt{k} \). Then since \(m \geq 8 \), by (iii) of Lemma 1, we have \(\psi_I(x) \leq \phi_I(x) \leq 4k^{-4} \) and consequently

\[
e_k \leq 16k^{-3}n^{-1}.
\]

Case \(1/2 \leq a < \sqrt{k} \). The smallest interval \(J \) which contains \(x \) and \(I \) has length \((a + 1)|I| \) and on \(I \),

\[
M(f') \geq \frac{1}{|J|} \int_J |f'| \geq \frac{k}{n(a + 1)|I|}
\]

and therefore \(m \geq 4n \int_J M(f') \geq 4k/(a + 1) \geq \sqrt{k} \). This gives by (iii) of Lemma 1,

\[
e_k \leq \frac{4k}{n} \phi_I(x) \leq \frac{4k}{n} (a^2 + 1)^{-m} \leq \frac{16k}{n} (5/4)^{-\sqrt{k}}.
\]

Case \(0 < a < 1/2 \). We write \(a =: 2^{-m/\lambda} \) with \(0 < \lambda \leq m \). Similar to the second case, for \(u \in I \), we have \(M(f')(u) \geq (k - 1)/n(u - x) \). Therefore,

\[
m \geq 4n \int_I M(f') \geq 4(k - 1) \int_{2^{-m/\lambda}|I|}^{1/2} \frac{du}{u} \geq 2k \left(\frac{m}{\lambda} \right) \log 2.
\]

This shows that \(\lambda \geq 2k \log 2 \geq k \). Hence by (ii) of Lemma 1, we have

\[
e_k \leq \frac{4k}{n} \phi_I(x) \leq \frac{32k}{n} 2^{-\sqrt{k}/4}.
\]

The estimates (7)-(9) serve to show that \(\sum_1 = \sum e_k \leq c n^{-1} \), with \(c \) an absolute constant. This combined with (5) and the corresponding estimate for \(\sum_{-1} \) when placed in (4) proves the theorem.

We turn now to the proof of Lemma 1. For this, we shall use the following:

LEMMA 2. For each even integer \(m \geq 8 \) there is a rational function \(R \) of degree \(\leq 2m \) with the following properties:

(i) \(R(x) \geq 1, \ x \in [-1, 0] \),

(ii) \(0 \leq R(x) \leq 2 \), for \(-\infty < x < \infty \),

(iii) \(|R(x)| \leq 2 \cdot 2^{-m/4j}, \) if \(2^{-(j+1)} \leq x \leq 1/2, \) with \(\sqrt{m} - 1 \leq j < m \).

PROOF. With \(a := 2^{-1/m} \) and \(a_k := a^{k^2} \), we define \(p(x) := \prod_{1}^{m}(x + a_k) \). We first estimate \(\pi(x) := p(-x)/p(x) = \prod_{1}^{m}(-x + a_k)/(x + a_k) \) when \(x \geq 0 \). Since each term in \(\pi \) has absolute value at most 1, we have

\[
|\pi(x)| \leq 1, \quad x \geq 0.
\]

When \(a_m \leq x \leq 1/2 \), we take \(j \) so that \(a_j+1 \leq x \leq a_j \); so \(\sqrt{m} - 1 \leq j < m \). Then,

\[
|\pi(x)| \leq \pi_1(x) := \prod_{1}^{j} \frac{a_k - x}{a_k + x}.
\]
We now use the inequality \((1 - t)/(1 + t) \leq e^{-2t}\), which is valid for \(0 \leq t \leq 1\). This gives

\[
|\pi(x)| \leq \prod_{1}^{j} \frac{1 - x/a_k}{1 + x/a_k} \leq \exp \left(-2 \sum_{1}^{j} \frac{a_{j+1}}{a_k} \right) =: \exp(-2\sigma(j)).
\]

Since \((j + 1)^2 - k^2 \leq (j - k + 1)(2j + 1)\), we have with \(b := a^{2j+1}\),

\[
\sigma(j) \geq \sum_{1}^{j} b^{2^r} = b^{1 - b^j}. \tag{11}
\]

But, since \(\sqrt{m} - 1 \leq j < m\), \(b \geq 1/4\); \(1 - b^j \geq 1/2\); also \(1 - e^{-t} \leq t\), for \(0 < t \leq 1\). Hence,

\[
\sigma(j) \geq \frac{m}{8(2j + 1)\log 2}. \tag{12}
\]

Since \(2\log 2 \leq 1/\log 2\), using our last estimate for \(\sigma(j)\) in (11) gives

\[
|\pi(x)| \leq \exp \left(-\frac{m \log 2}{2(2j + 1)} \right) \leq 2^{-m/8j}, \quad a_{j+1} \leq x \leq a_j, \text{ for } \sqrt{m} - 1 \leq j < m. \tag{12}
\]

We can now take \(R(x) := 2\pi^2(x)/(1 + \pi^2(x))\). Since \(\pi(-x) = 1/\pi(x)\) and \(R(-x) = 2/(1 + \pi^2(x))\), (i) follows from (10). The estimate (ii) is obvious, while (iii) follows immediately from (12).

Proof of Lemma 1. It is enough to consider \(I = [-1,0]\) since the lemma then follows for any other interval by a change of scale. We let

\[
T(x) := ((x + 1/2)^2 + 3/4)^{-m}
\]

and \(R\) be as in Lemma 2. We can then take \(\phi(x) := R(x)R(-1 - x)T(x)\). Since \(T(x) \geq 1, x \in I\), (i) follows from (i) of Lemma 2. Since \(T(x) \leq 1, x \notin I\), (ii) follows when \(\lambda \leq 4\) from Lemma 2(ii). For the other values of \(\lambda\), we choose \(j\) so that \(j^2 < m^2/\lambda < (j + 1)^2\), and then (ii) follows from Lemma 2(ii), (iii). Finally, if \(\text{dist}(x, I) \geq a\), then \((x - 1/2)^2 + 3/4 \geq (a + 1/2)^2 + 3/4 \geq a^2 + 1\) and therefore (iii) follows from (ii) of Lemma 2.

References

Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208