On the stable range of uniform algebras and $H^ \infty$
HTML articles powered by AMS MathViewer
- by Gustavo Corach and Fernando Daniel Suárez
- Proc. Amer. Math. Soc. 98 (1986), 607-610
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861760-1
- PDF | Request permission
Abstract:
We find a criterion for stable range reducibility for uniform algebras and we apply it to the algebra ${H^\infty }$.References
- H. Bass, $K$-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math. 22 (1964), 5–60. MR 174604, DOI 10.1007/BF02684689
- Gustavo Corach and Angel R. Larotonda, Stable range in Banach algebras, J. Pure Appl. Algebra 32 (1984), no. 3, 289–300. MR 745359, DOI 10.1016/0022-4049(84)90093-8
- Gustavo Corach and Fernando Daniel Suárez, Stable rank in holomorphic function algebras, Illinois J. Math. 29 (1985), no. 4, 627–639. MR 806470
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
- P. W. Jones, D. Marshall, and T. Wolff, Stable rank of the disc algebra, Proc. Amer. Math. Soc. 96 (1986), no. 4, 603–604. MR 826488, DOI 10.1090/S0002-9939-1986-0826488-2
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 98 (1986), 607-610
- MSC: Primary 46J15; Secondary 30H05, 42B30
- DOI: https://doi.org/10.1090/S0002-9939-1986-0861760-1
- MathSciNet review: 861760